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Arithmetic on quantum computers: why do we care?

Classically verifiable quantum advantage from
a computational Bell test

Gregory D. Kahanamoku-Meyer ©'%4, Soonwon Choi', Umesh V. Vazirani?> and Norman Y. Yao ®'>4

ing experimental demonstrations of quantum computational advantage have had the limitation that v g the correctness
of the quantum device requires exponentially costly classical computations. Here we propose and analyse an interactive protocol
for demonstrating quantum computational advantage, is efficiently classically verifiable. Our protocol relies on a class of
cryptographic tools called trapdoor claw-free functions. Although this type of function has been applied to quantum advantage
protocols before, our protocol employs a surprising connection to Bell's inequality to avoid the need for a demanding cryptographic
property called the adaptive hardcore bit, while maintaining essentially no increase in the quantum circuit complexity and no extra
assumptions. Leveraging the relaxed cryptographic requirements of the protocol, we present two trapdoor claw-free function con-
structions, based on Rabin's function and the Diffie-Hellman problem, which have not been used in this context before. We also
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Multiplication on quantum computers

Today's goal: implement the following unitaries

Ugxq X) [Y) W) = X} y) [w + xy)

Ucxq(a) [X) [W) = [X) |w + ax)

.. with as few gates and qubits as possible.
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3. Fast quantum multiplication (few gates + qubits)
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Background: schoolbook multiplication

The “schoolbook” method: xy = 3=,:(2'x))(2ly;) = 32,2 Vxiy;

1 1 0 1
x 1 0 1 0
1 0 1 O
1 0 1 0
+ 1 0 1 0
1 0 O 0 0 1 0

Running time: O(n?) operations
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Background: schoolbook multiplication

Given two n-bit numbers x and y, what if we use base b = 2"/2?

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4

Xy = X1y1b? + Xoy1b + x1y0b + XoYo

Time remains O(n?), because 4(n/2)? = n?
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Background: Karatsuba multiplication

Xy = X1y1b? + (Xoy1 + X1Yo)b + XoVo

Observation: Xoy: + X1¥o = (X1 4 Xo) (1 + Yo) — X1y1 — XoYo

Can compute xy with only multiplications of size n/2:

1. X1Y1
2. XoYo
3. (X1 +Xo) (V1 + Vo)

Computational cost: 3(n/2)? = 2n? = O(n?)
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Background: Karatsuba multiplication

Question: why don’'t we always do this, classically?

Answer: the extra complexity isn’t always worth it!

.. but for large enough values, it is

GNU multiple-precision arithmetic library cutoff: 2176 bit numbers
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Background: Toom-Cook multiplication

Break the n bit numbers into k chunks of n/k bits.

Perform n bit multiply via 2k — 1 multiplications of n/k bit numbers (compare: k?).

Algorithm Gate count
Schoolbook O(n?)
k=2 (nlng ) — O(HWBS---)
k=3 O(n'og:5) = O(n"46)
k=4 O(n'oe.”)y = O(n"40)




Summary: fast multiplication

- “Standard” multiplication requires time O(n?) operations
- Faster algorithms exist, but have large constant factors

1
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Can these fast circuits be made quantum?

Challenge: making recursive algorithms reversible

—— —f&= Work Qubits
- 4=;§ Kowada et al. ‘06 | O(n'58" |
\45 owada € a.y (ﬂ )
—— Parentetal. '18 | O(n"*)
i Gidney '19 O(n)
\ = Gidney 19 requires over 12,000 ancilla
. ==<  qubits for 2048-bit multiplication.
Z» &€ Isit possible to do better?
\% Result: Fast multiplication using 1 ancilla
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A fundamentally quantum way of doing arithmetic

Quantum Fourier transform:

2mwiwz
QFT |w) = Zexp< i ) Z)
[Draper '04]: Arithmetic in Fourier space

Ixy) = QFT1Z (Z’T’Xyz) 12)

How to implement |x) |y) [0) — |x) |y) |xy)?
1) Generate |x) |y) 3, |2), 2) apply a phase rotation of ,3) apply QFT™
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A fundamentally quantum way of doing arithmetic

How do we apply exp (2“2'#)7

Xyz =321 ¢ 222"z,

2mixyz 2mi2i itk
exp < on ) = Hexp (ZI’JX‘.ijh
i,k

Xi,Yj,Zk are binary values—apply phase only if they all are equal to 1!
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A fundamentally quantum way of doing arithmetic

How do we apply exp (2“2'fyz)?

XYZ =3k 2122kxy;zp

2mixyz 2mi2ititk
exp < on ) = HCXp (an‘ylzh
I,j,k

Xi,Yj,Zk are binary values—apply phase only if they all are equal to 1!

A series of CCR,, gates between the bits of |x), |y), and |z)!

14
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A fundamentally quantum way of doing arithmetic

2mixyz itk
exp ( on ) = Hexp (ZHX,'ijk

ijR

The downside: For n-bit numbers, this requires n* gates!

A modest improvement: classical-quantum multiplication ¢(a) |x) |0) = |x) |ax)

2miaxz 2mia2i™
exp 2” = HCXp TX,ZJ

i

Here: O(n?) controlled phase rotations (matches Schoolbook algorithm)



Fast quantum multiplication

Main question: Can we combine fast multiplication with
Fourier arithmetic to get the benefits of both?
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Fast classical-quantum multiplication

Goal: Apply phase exp ( Z%xz); x and z are quantum
2
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We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Previously:

exp (ipxz) = Hexp (/¢2’+fxz)
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We want to split the phase ¢xz into the sum of many phases, which are easy to implement.
Plugging in Karatsuba:

exp (igpxz) = exp (Ip2"x121)
- exp (i¢XoZo)

- exp (i¢>2”/2((xo + x1)(2o + 21) — XoZo — qu1))

How are we supposed to reuse values in the phase?



Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Karatsuba:
Xz = 2"x121 + 2" ((Xo + X1) (20 + Z1) — XoZo — X121) + XoZo



Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Karatsuba:
Xz = 2"x121 + 2" ((Xo + X1) (20 + Z1) — XoZo — X121) + XoZo



Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Re-ordering Karatsuba:

XZ = (2” — 2n/2)X121 aF Zn/z(XQ aF X])(Zo aF 21) aF (1 = 2n/2)X020



Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢xz) |X) |z)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.
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Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢xz) |X) |z)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Plugging in reordered Karatsuba:

exp (igxz) =exp (igxiz7) 1= (2" —2")¢
- exXp (i¢2XoZ0) ¢2 = (1 - 2ﬂ/2)¢
-exp (Ip3(Xo + X1)(Z0 + 1)) ¢z =2"2¢

Each of these has the same structure, but on half as many qubits — do it recursively!
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Complexity: T(n) = 3T(n/2)
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Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

exp (igxz) =exp (igxaz7) P = (2" —2"%)¢
- exp (I¢2X0Zo) ¢ =(1-2"7)¢
- exp (i¢3(X0 +X1)(ZO +Z1)) 3 = 2”/2¢

Complexity: T(n) =3T(n/2) = O(n'°&3) = O(n'°%") gates!

19
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Use quantum addition circuits.
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Fast quantum-quantum multiplication

Goal: U [x) |y) [0) = |x) |y} [xy)
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Fast quantum-quantum multiplication

Goal: Apply phase exp (%Txyz); X, Y, and z are quantum
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Fast quantum-quantum multiplication

Goal: Implement PhaseTripleProduct(¢) |x) |v) |2) = exp (ipxyz) |X) |y) |2)

Previously:
exp (ipxyz) = Hexp (i¢2’+f+’?xiyjzk) (n® doubly-controlled phase rotations)
ijk
Question: How would you classically compute a triple product like xyz?

Answer: Use parentheses! xyz = x(yz). Then it's O(n?)

Doesn't work in the phase!!

21



Detour: Generalizing Karatsuba’s method

“Triple schoolbook” method uses O(n?) operations—8 multiplications of size n/2.
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Detour: Generalizing Karatsuba’s method

“Triple schoolbook” method uses O(n?) operations—8 multiplications of size n/2.

Is there a decomposition like Karatsuba for the triple product? Yes!

Xyz :<23n/2 - 2H/Z)X1Y1Z1

1
+ 52" +2") (0 +31) (Yo + Y1) (20 + 21
1
+ 5(2n —2"2)(Xo — x1) (Yo — Y1) (2o — Z1)
+ (1= 2")xoY020
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Detour: Generalizing Karatsuba’s method
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Is there a decomposition like Karatsuba for the triple product?

Xyz :<23n/2 - 2H/Z)X1Y1Z1

1
+ 52" +2") (0 +31) (Yo + Y1) (20 + 21
1
+ 5(2n —2"2)(Xo — x1) (Yo — Y1) (2o — Z1)
+ (1= 2")xoY020

Only 4 multiplications of length n/2 instead of 8!
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Detour: Generalizing Karatsuba’s method

Only 4 triple multiplications of length n/2, instead of 8!

Recursion relation: T(n) ~ 4T(n/2) thus: T(n) = O(n?)

Result (modified Toom-Cook): k pieces — O(n'°e:Gk=2)) runtime

fe‘ Runtime ‘
2 O(n?)
3
4

O(n1.77»~)
O(n1.66-~-)

These runtimes are achieved with 2 ancilla qubits.
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Depth considerations

Parallelization is natural—achieving depth O(n) is easy!

|

xxxxx
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Parallelization is natural—achieving depth O(n) is easy!

But O(n"8)/n = O(n°3®) is our lower bound: can we get there?
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Depth considerations

Parallelization is natural—achieving depth O(n) is easy!

But O(n"8)/n = O(n°3®) is our lower bound: can we get there?

Claim: Can implement PhaseProduct and PhaseTripleProduct in sub-linear time,
using O(n) ancillas!

Suprisingly, multiplication itself is bottlenecked by QFT
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Modular arithmetic

So far: have been using phase
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So far: have been using phase

(denominator matches order of QFT)

Observation:
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exp (27rl N ) = exp (27TIN
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Modular arithmetic

Goal: only use n bits for output modulo N

Observation:

XyZ\ .(xy mod N)z
exp (27‘&'/ N ) = exp (Zﬂ'IN

Define
Xy mod N
W= —"———

N
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Modular arithmetic

Goal: only use n bits for output modulo N

Observation:

XyZ\ .(xy mod N)z
exp (27‘&'/ N ) = exp (Zﬂ'IN

Define
Xy mod N
W= —"———

N

Now, multiplication:
X} 10) = [x) [w)
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Modular arithmetic

Goal: only use n bits for output modulo N

Observation:

XyZ\ .(xy mod N)z
exp (27‘&'/ N ) = exp (Zﬂ'IN

Define
Xy mod N
W= —"———

N

Now, multiplication:
X} 10) = [x) [w)

Output register requires n + O(log(1/¢)) qubits
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Classical-quantum Quantum-quantum
1 ancilla qubit 2 ancilla qubits
k| Gates | k| Gates |
2 | O(n>8) 2] o)

3 O(ﬂw‘%"') 3 O(n1.77---)
4 O(I’)“‘O"') 4 O(ﬂ1'66'”)
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Classical-quantum Quantum-quantum
1 ancilla qubit 2 ancilla qubits
k| Gates | k| Gates |
2 | O(n>8) 2] o)
3 O(n“%”') 3 O(ﬂ1'77”')
4 O(H1AO---) 4 O(ﬂ1'66'”)
Implications:

Shor's algorithm: ©(n?4%) gates using 2n + O(log n) qubits
Exact QFT in O(n"%6) gates using 1 ancilla
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Open Questions

- Can multiplication modN be performed with @(1) ancillas?
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Open Questions

- Can multiplication modN be performed with @(1) ancillas?
- Can QFT be done in sub-linear depth without needing a lot of ancillas?
- Can we do any of these things with zero ancillas?

- How well can we optimize explicit circuits?

Thank you!

Greg Kahanamoku-Meyer — gkm@berkeley.edu
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Backup
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Fast classical-quantum multiplication: algorithm

PhaseProduct(g, |X) ,|2))

Input: Quantum state |x) |z), classical value ¢

Output: Quantum state exp(ipxz) |X) |z)

1. Split |x) and |z) in half, as |x1) |Xo) and |z1) |zo)

Apply PhaseProduct((2" — 2"/2)¢, |x1) , |z1))

Apply PhaseProduct((1—2"%)¢, [Xo) , |20))

Add |x1) to |Xo), and |z;) to |zo). Registers now hold |xq) [Xo + X1) |21) |20 + Z1).
Apply PhaseProduct(2"/2¢, |xo + X1 , |20 + 21)).

Subtract |x), |z1) to return to registers to [x1) |Xo) [21) |20).

on L 5 W N
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