Fast quantum integer multiplication
with almost no ancillas

Gregory D. Kahanamoku-Meyer
July 14, 2023

Arithmetic on quantum computers: why do we care?

Motivation

Arithmetic on quantum computers: why do we care?

Classically verifiable quantum advantage from
a computational Bell test

Gregory D. Kahanamoku-Meyer ©'%4, Soonwon Choi', Umesh V. Vazirani?> and Norman Y. Yao ®'>4

ing experimental demonstrations of quantum computational advantage have had the limitation that v g the correctness
of the quantum device requires exponentially costly classical computations. Here we propose and analyse an interactive protocol
for demonstrating quantum computational advantage, is efficiently classically verifiable. Our protocol relies on a class of
cryptographic tools called trapdoor claw-free functions. Although this type of function has been applied to quantum advantage
protocols before, our protocol employs a surprising connection to Bell's inequality to avoid the need for a demanding cryptographic
property called the adaptive hardcore bit, while maintaining essentially no increase in the quantum circuit complexity and no extra
assumptions. Leveraging the relaxed cryptographic requirements of the protocol, we present two trapdoor claw-free function con-
structions, based on Rabin's function and the Diffie-Hellman problem, which have not been used in this context before. We also

Motivation

Arithmetic on quantum computers: why do we care?

C‘Iéssically verifiable quantum advantage from

a ComPUtatlonaI E A Cryptographic Test of Quantumness and Certifiable
Gregory D. Kahanamoku-Meyero: Randomness from a Single Quantum Device

ing experimental demonstrations of quai 7y A BRAKERSKI, Weizmann Institute of Science, Israel
of the quantum device requires exponentially

for demonstrating quantum computationala PAUL CHRISTIANO, OpenAl, USA

cryptographic tools called trapdoor claw-fre - RMILA MAHADEV, California Institute of Technology,
protocols before, ou protacol employs a surp

property called the adaptive hardeore bit, whi

assumptions. Leveraging the relaxed cryptog

structions, based on Rabin's function and the

We consider a new model for the testing of untrusted qu e of a single polynomial
time bounded quantum device oly: ime r. In this model, we
propose solutions to two tasks—a classical verification that the untrusted device is
“truly quantum” and a protocol for pre fiable from a single untrusted quantum

Motivation

Arithmetic on quantum computers: why do we care?

Cléssically verifiable quantum advantage

a ComPUtatlonaI E A Cryptographic Test of Quantumness and Certifiable

Gregory D. Kahanamoku-Meyerot Randomness from a Sincla Ouantum Novica
SOMPUT. l y for Industrial and Applied Mathema

Existing experimental demonstrations of quai /1 A RRAKERSKI. Weizt , No. 5, pp. 1484-1509, October 1997

of the quantum device requires exponentially S

for demonstrating quantum computationala PAUL CHRISTIANO, Oper

cryptographic tools called trapdoor claw-frec JRAMILA MAHADEV,

protocols before, our protocol employs a surp

propersy ol theaaptvhardeorobitwhi UMESH VAZIRANI, v e POLYNOMIAL-TIME ALGORITHMS FOR PRIME FACTORIZATION
Snscton,based on facins fancton sty ||| MAS VIDICK, Galiton - A ND DISCRETE LOGARITHMS ON A QUANTUM COMPUTER*

‘We consid ew model for

time bounded quantum devic:

mputing device;

omputing device with an ir in computation

not be true when quantum mechanics is taken into
hm

Multiplication on quantum computers

Today's goal: implement the following unitaries

Multiplication on quantum computers

Today's goal: implement the following unitaries

Ugxq [X) [¥)10) = X} 1y) [xy)

Multiplication on quantum computers

Today's goal: implement the following unitaries

Ugxq [X) [¥)10) = X} 1y) [xy)

Uexq(a) [X) |0) = [x) |ax)

Multiplication on quantum computers

Today's goal: implement the following unitaries

Ugxq [X) [¥)10) = X} 1y) [xy)

Uexq(a) [X) |0) = [x) |ax)

.. with as few gates and qubits as possible.

Multiplication on quantum computers

Today's goal: implement the following unitaries

Ugxq X) [Y) W) = X} y) [w + xy)

Ucxq(a) [X) [W) = [X) |w + ax)

.. with as few gates and qubits as possible.

Overview

1. Fast multiplication (few gates)

Overview

1. Fast multiplication (few gates)

2. Quantum multiplication (few qubits)

Overview

1. Fast multiplication (few gates)
2. Quantum multiplication (few qubits)
3. Fast quantum multiplication (few gates + qubits)

Background: schoolbook multiplication

The “schoolbook” method: xy = 3=,:(2'x))(2ly;) = 32,2 Vxiy;

1 1 1
x 1 0
1 0 1 O
1 0 1 0
+ 1 0 1 0
1 0 O 0 0 1 0

Background: schoolbook multiplication

The “schoolbook” method: xy = 3=,:(2'x))(2ly;) = 32,2 Vxiy;

1 1 0 1
x 1 0 1 0
1 0 1 O
1 0 1 0
+ 1 0 1 0
1 0 O 0 0 1 0

Running time: O(n?) operations

Background: schoolbook multiplication

Given two n-bit numbers x and y, what if we use base b = 2"/2?

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4

Background: schoolbook multiplication

Given two n-bit numbers x and y, what if we use base b = 2"/2?

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4

Xy = X1y1b? + Xoy1b + x1y0b + XoYo

Background: schoolbook multiplication

Given two n-bit numbers x and y, what if we use base b = 2"/2?

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4

Xy = X1y1b? + Xoy1b + x1y0b + XoYo

Time remains O(n?), because 4(n/2)? = n?

Background: Karatsuba multiplication

Xy = X1y1b? + (Xoy1 + X1Yo)b + XoVo

Background: Karatsuba multiplication

Xy = X1y1b? + (Xoy1 + X1Yo)b + XoVo

Observation: Xoy: + X1¥o = (X1 4 Xo) (1 + Yo) — X1y1 — XoYo

Can compute xy with only multiplications of size n/2:

1. X1Y1
2. XoYo
3. (X1 4+ Xo0) (V1 + Yo)

Background: Karatsuba multiplication

Xy = X1y1b? + (Xoy1 + X1Yo)b + XoVo

Observation: Xoy: + X1¥o = (X1 4 Xo) (1 + Yo) — X1y1 — XoYo

Can compute xy with only multiplications of size n/2:

1. X1Y1
2. XoYo
3. (X1 +Xo) (V1 + Vo)

Computational cost: 3(n/2)? = 2n? = O(n?)

Background: Karatsuba multiplication
/
[x| ;
X

\

Background: Karatsuba multiplication

[x|
L [
e D
T [—

—— N
T T

]

-

Background: Karatsuba multiplication

/N
HEEHHI

1

Background: Karatsuba multiplication

/N
HEEHHI

1

Depth: d = log, n

Background: Karatsuba multiplication

W~
_—
/= =
T mmmm NS
pp—
= =N
mmm /S Depth: d = log, n
T =
. /_/E T
O mmm = perations:
(Y N ——
. =
iy
—-
o =

Background: Karatsuba multiplication

7=
Ne=
/= =
T T ammm =
N\
=
mmm /S Depth: d = log, n
T O\
L Py N
O mmm = perations:
T S | .
i — Recursion relation: T(n) ~ 3T(n/2)
—_——
iy
——
o =

Background: Karatsuba multiplication

i~
=
[X, | /-_ e
7 /=
_ \E
Ty momm /= Depth: d = log, n
=
X X1 4 4§ o) o
| v A\l
“= Recursion relation: T(n) ~ 3T(n/2)
/'_>§
o+)’1 _ >§

Background: Karatsuba multiplication

Question: why don’'t we always do this, classically?

Answer: the extra complexity isn’t always worth it!

Background: Karatsuba multiplication

Question: why don’'t we always do this, classically?

Answer: the extra complexity isn’t always worth it!

.. but for large enough values, it is

Background: Karatsuba multiplication

Question: why don’'t we always do this, classically?

Answer: the extra complexity isn’t always worth it!

.. but for large enough values, it is

GNU multiple-precision arithmetic library cutoff: 2176 bit numbers

Background: Toom-Cook multiplication

Break the n bit numbers into k chunks of n/k bits.

Background: Toom-Cook multiplication

Break the n bit numbers into k chunks of n/k bits.

Perform n bit multiply via 2k — 1 multiplications of n/k bit numbers (compare: k?).

Background: Toom-Cook multiplication

Break the n bit numbers into k chunks of n/k bits.

Perform n bit multiply via 2k — 1 multiplications of n/k bit numbers (compare: k?).

Algorithm Gate count
Schoolbook O(n?)
k=2 (nlng) — O(HWBS---)
k=3 O(n'og:5) = O(n"46)
k=4 O(n'oe.”)y = O(n"40)

Summary: fast multiplication

- “Standard” multiplication requires time O(n?) operations
- Faster algorithms exist, but have large constant factors

1

Can these fast circuits be made quantum?

Can these fast circuits be made quantum?

Challenge: making recursive algorithms reversible

[

L. Py
Xo =
_—

=
o \45
[N

- =

-\

=
-
-y

_— =

I =
| o

[N

L

T

[o [y
-

£ =
——
oA \45
L AN

Can these fast circuits be made quantum?

Challenge: making recursive algorithms reversible

—— ——F Work Qubits
- 4=;§ Kowada et al. ‘06 | O(n58+ |
\45 owada e a.y (n)
—— Parentetal. '18 | O(n"*)
[Py Gidney '19)
[DNy
[N
-_gg
= T =
o = £
L AN

Can these fast circuits be made quantum?

Challenge: making recursive algorithms reversible

—— —< Work Qubits
- 4=; Kowada et al. ‘06 ‘ O(n158 |
T owada e a.y (n)
— Parentetal. '18 | O(n"*)
T Gidney '19 O(n)
v Ay

Gidney "19 requires over 12,000 ancilla
qubits for 2048-bit multiplication.

Can these fast circuits be made quantum?

Challenge: making recursive algorithms reversible

—— —= Work Qubits
- 4=;§ Kowada et al. ‘06 | O’ |
T T S owada e a.y (n)
—— Parentetal. '18 | O(n"#)
il Gidney '19 O(n)
Ty) , : .
- \ = Gidney 19 requires over 12,000 ancilla
. ==< qubits for 2048-bit multiplication.
— Z’ 4= |Isit possible to do better?
N=
L AN

Can these fast circuits be made quantum?

Challenge: making recursive algorithms reversible

—— —f&= Work Qubits
- 4=;§ Kowada et al. ‘06 | O(n'58" |
\45 owada € a.y (ﬂ)
—— Parentetal. '18 | O(n"*)
i Gidney '19 O(n)
\ = Gidney 19 requires over 12,000 ancilla
. ==< qubits for 2048-bit multiplication.
Z» &€ Isit possible to do better?
\% Result: Fast multiplication using 1 ancilla

A fundamentally quantum way of doing arithmetic

Quantum Fourier transform:

-
QFT jw) = 3 exp < 7;’:”) 12)

A fundamentally quantum way of doing arithmetic

Quantum Fourier transform:

2mwiwz
QFT |w) = Zexp< i >|>
[Draper '04]: Arithmetic in Fourier space

Ixy) = QFT1Z (Z’T’Xyz) 12)

A fundamentally quantum way of doing arithmetic

Quantum Fourier transform:

-
QFT jw) = 3 exp < ”2’:”) 12)

4

[Draper '04]: Arithmetic in Fourier space

_ 2mixyz
o) = 07 S (252) 2
z

How to implement |x) |y) [0) — |x) |y) |xy)?

A fundamentally quantum way of doing arithmetic

Quantum Fourier transform:

2mwiwz
QFT |w) = Zexp< i) Z)
[Draper '04]: Arithmetic in Fourier space

Ixy) = QFT1Z (Z’T’Xyz) 12)

How to implement |x) |y) [0) — |x) |y) |xy)?
1) Generate |X) |y) >, |2)

A fundamentally quantum way of doing arithmetic

Quantum Fourier transform:

2mwiwz
QFT |w) = Zexp< i) Z)
[Draper '04]: Arithmetic in Fourier space

Ixy) = QFT1Z (Z’T’Xyz) 12)

How to implement |x) |y) [0) — |x) |y) |xy)?
1) Generate |x) |y) 3, |2), 2) apply a phase rotation of

A fundamentally quantum way of doing arithmetic

Quantum Fourier transform:

2mwiwz
QFT |w) = Zexp< i) Z)
[Draper '04]: Arithmetic in Fourier space

Ixy) = QFT1Z (Z’T’Xyz) 12)

How to implement |x) |y) [0) — |x) |y) |xy)?
1) Generate |x) |y) 3, |2), 2) apply a phase rotation of ,3) apply QFT™

A fundamentally quantum way of doing arithmetic

How do we apply exp (2“2'#)7

14

A fundamentally quantum way of doing arithmetic

How do we apply exp (2“2'fyz)?

Xy =32 2xiy;

14

A fundamentally quantum way of doing arithmetic

How do we apply exp (2“2'#)7

Xyz =321 ¢ 222"z,

2mixyz 2mi2i itk
exp < on) = Hexp (ZI’JX‘.ijh

ijR

14

A fundamentally quantum way of doing arithmetic

How do we apply exp (2“2'#)7

Xyz =321 ¢ 222"z,

2mixyz 2mi2i itk
exp < on) = Hexp (ZI’JX‘.ijh
i,k

Xi,Yj,Zk are binary values—apply phase only if they all are equal to 1!

14

A fundamentally quantum way of doing arithmetic

How do we apply exp (2“2'fyz)?

XYZ =3k 2122kxy;zp

2mixyz 2mi2ititk
exp < on) = HCXp (an‘ylzh
I,j,k

Xi,Yj,Zk are binary values—apply phase only if they all are equal to 1!

A series of CCR,, gates between the bits of |x), |y), and |z)!

14

A fundamentally quantum way of doing arithmetic

2mixyz 2mi2 Ik
exp (2ny) = Hexp (ZHX,')/jZk>

ijR

The downside:

A fundamentally quantum way of doing arithmetic

2mixyz 2mi2ititk
exp (2ny) = Hexp (aniyj’Zk>

ijR

The downside: For n-bit numbers, this requires n* gates!

A fundamentally quantum way of doing arithmetic

2mixyz 2mi2ititk
exp (2ny) = Hexp (aniyj’Zk>

ijR

The downside: For n-bit numbers, this requires n* gates!

A modest improvement: classical-quantum multiplication ¢(a) |x) |0) = |x) |ax)

A fundamentally quantum way of doing arithmetic

2mixyz itk
exp (on) = Hexp (ZHX,'ijk

ijR

The downside: For n-bit numbers, this requires n* gates!

A modest improvement: classical-quantum multiplication ¢(a) |x) |0) = |x) |ax)

2miaxz 2mia2i™
exp 2” = HCXp TX,ZJ

i

Here: O(n?) controlled phase rotations (matches Schoolbook algorithm)

Fast quantum multiplication

Main question: Can we combine fast multiplication with
Fourier arithmetic to get the benefits of both?

Fast classical-quantum multiplication

Goal: U(a) |x) |0) = |x) |ax)

Fast classical-quantum multiplication

Goal: Apply phase exp (Z%xz); x and z are quantum
2

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |2) = exp (i¢x2) |x) |2)

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |2) = exp (i¢x2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |2) = exp (i¢x2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Previously:

exp (ipxz) = Hexp (/¢2’+fxz)

I

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |X) |2) = exp (i¢x2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Karatsuba:
Xz = 2"x121 4+ 2" ((Xo + X1) (20 + 21) — XoZo — X1Z1) + XoZo

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Plugging in Karatsuba:
exp (igpxz) = exp (Ip2"x121)
- exp (I9Xo20)

- exp (i¢>2”/2((xo + x1)(2o + 21) — XoZo — qu1))

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)
We want to split the phase ¢xz into the sum of many phases, which are easy to implement.
Plugging in Karatsuba:

exp (igpxz) = exp (Ip2"x121)
- exp (i¢XoZo)

- exp (i¢>2”/2((xo + x1)(2o + 21) — XoZo — qu1))

How are we supposed to reuse values in the phase?

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Karatsuba:
Xz = 2"x121 + 2" ((Xo + X1) (20 + Z1) — XoZo — X121) + XoZo

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Karatsuba:
Xz = 2"x121 + 2" ((Xo + X1) (20 + Z1) — XoZo — X121) + XoZo

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Re-ordering Karatsuba:

XZ = (2” — 2n/2)X121 aF Zn/z(XQ aF X])(Zo aF 21) aF (1 = 2n/2)X020

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢xz) |X) |z)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Plugging in reordered Karatsuba:
exp (igxz) = exp (i</>(2” _ 2”/2)qu1)
- exp <i¢(1 — 2”/2)XOZO>

- exp (i(bZ”/z(Xo +x1)(Zo +Z1))

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢xz) |X) |z)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.
Plugging in reordered Karatsuba:

exp (igxz) =exp (igxiz7) 1= (2" —2")¢
- exp (IpaXoZo) ¢ =(1-2"2)¢
-exp (Ig3(Xo + X1)(20 + 21)) ¢z =2"2¢

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢xz) |X) |z)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Plugging in reordered Karatsuba:

exp (igxz) =exp (igxiz7) 1= (2" —2")¢
- exXp (i¢2XoZ0) ¢2 = (1 - 2ﬂ/2)¢
-exp (Ip3(Xo + X1)(Z0 + 1)) ¢z =2"2¢

Each of these has the same structure, but on half as many qubits — do it recursively!

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

exp (igxz) =exp (igxaz7) P = (2" —2"%)¢
- exp (I¢2X0Zo) ¢ =(1-2"7)¢
- exp (i¢3(X0 +X1)(ZO +Z1)) 3 = 2”/2¢

Complexity: T(n) = 3T(n/2)

19

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

exp (igxz) =exp (igxaz7) P = (2" —2"%)¢
- exp (I¢2X0Zo) ¢ =(1-2"7)¢
- exp (i¢3(X0 +X1)(ZO +Z1)) 3 = 2”/2¢

Complexity: T(n) =3T(n/2) = O(n'°&3) = O(n'°%") gates!

19

How many qubits do we need?

20

How many qubits do we need?

Splitting registers |x) — |x1) [Xo) and [2) — |z1) |20), can immediately do

* exp (ip1xiz1)

* exp (IXo2o)

20

How many qubits do we need?

Splitting registers |x) — |x1) [Xo) and [2) — |z1) |20), can immediately do
* exp (ig1xiz1)

* exp (IXo2o)

What about exp (igs(Xo + X1)(Z0 + 21))?

20

How many qubits do we need?

Splitting registers |x) — |x1) [Xo) and [2) — |z1) |20), can immediately do

* exp (ip1xiz1)

* exp (IXo2o)

What about exp (igs(Xo + X1)(Z0 + 21))?

Use quantum addition circuits.

20

How many qubits do we need?

Splitting registers |x) — |x1) [Xo) and [2) — |z1) |20), can immediately do

* exp (ip1xiz1)

* exp (IXo2o)

What about exp (igs(Xo + X1)(Z0 + 21))?

Use quantum addition circuits.

But, addition is reversible — do it in-place! E.g. |x1) [Xo) — |X1) |Xo + X1)

20

How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z1) |z0), can immediately do

* exp (ip1xiz1)

* exp (IXo2o)

What about exp (igs(Xo + X1)(Z0 + 21))?

Use quantum addition circuits.

But, addition is reversible — do it in-place! E.g. |x1) |Xo) — |X1) [Xo + X1)

Total number of ancillas:

20

How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z1) |z0), can immediately do

* exp (ip1xiz1)

* exp (IXo2o)

What about exp (igs(Xo + X1)(Z0 + 21))?

Use quantum addition circuits.

But, addition is reversible — do it in-place! E.g. |x1) |Xo) — |X1) [Xo + X1)

Total number of ancillas:

20

Fast quantum-quantum multiplication

Goal: U [x) |y) [0) = |x) |y} [xy)

21

Fast quantum-quantum multiplication

Goal: Apply phase exp (%Txyz); X, Y, and z are quantum

21

Fast quantum-quantum multiplication

Goal: Implement PhaseTripleProduct(e) [x) |y) [2) = exp (i¢xyz) |X) |y) |2)

21

Fast quantum-quantum multiplication

Goal: Implement PhaseTripleProduct(¢) |x) ly) |2) = exp (igxyz) |X) |v) |2)

Previously:

exp (ipxyz) = Hexp (i¢2’+f+’?xiyjzk) (n® doubly-controlled phase rotations)
ik

21

Fast quantum-quantum multiplication

Goal: Implement PhaseTripleProduct(¢) |x) |v) |2) = exp (ipxyz) |X) |y) |2)

Previously:
exp (ipxyz) = Hexp (i¢2’+f+’?xiyjzk) (n® doubly-controlled phase rotations)
ik

Question: How would you classically compute a triple product like xyz?

21

Fast quantum-quantum multiplication

Goal: Implement PhaseTripleProduct(e) [x) |y) [2) = exp (i¢xyz) |X) |y) |2)

Previously:

exp (ipxyz) = Hexp (i¢2’+f+’?xiyjzk) (n® doubly-controlled phase rotations)
ijk
Question: How would you classically compute a triple product like xyz?

Answer: Use parentheses! xyz = x(yz).

21

Fast quantum-quantum multiplication

Goal: Implement PhaseTripleProduct(e) [x) |y) [2) = exp (i¢xyz) |X) |y) |2)

Previously:

exp (ipxyz) = Hexp (i¢2’+f+’?xiyjzk) (n® doubly-controlled phase rotations)
ijk
Question: How would you classically compute a triple product like xyz?

Answer: Use parentheses! xyz = x(yz). Then it's O(n?)

21

Fast quantum-quantum multiplication

Goal: Implement PhaseTripleProduct(¢) |x) |v) |2) = exp (ipxyz) |X) |y) |2)

Previously:
exp (ipxyz) = Hexp (i¢2’+f+’?xiyjzk) (n® doubly-controlled phase rotations)
ijk
Question: How would you classically compute a triple product like xyz?

Answer: Use parentheses! xyz = x(yz). Then it's O(n?)

Doesn't work in the phase!!

21

Detour: Generalizing Karatsuba’s method

“Triple schoolbook” method uses O(n?) operations—8 multiplications of size n/2.

22

Detour: Generalizing Karatsuba’s method

“Triple schoolbook” method uses O(n?) operations—8 multiplications of size n/2.

Is there a decomposition like Karatsuba for the triple product?

22

Detour: Generalizing Karatsuba’s method

“Triple schoolbook” method uses O(n?) operations—8 multiplications of size n/2.

Is there a decomposition like Karatsuba for the triple product? Yes!

Xyz :<23n/2 - 2H/Z)X1Y1Z1

1
+ 52" +2") (0 +31) (Yo + Y1) (20 + 21
1
+ 5(2n —2"2)(Xo — x1) (Yo — Y1) (2o — Z1)
+ (1= 2")xoY020

22

Detour: Generalizing Karatsuba’s method

“Triple schoolbook” method uses O(n?) operations—8 multiplications of size n/2.

Is there a decomposition like Karatsuba for the triple product?

Xyz :<23n/2 - 2H/Z)X1Y1Z1

1
+ 52" +2") (0 +31) (Yo + Y1) (20 + 21
1
+ 5(2n —2"2)(Xo — x1) (Yo — Y1) (2o — Z1)
+ (1= 2")xoY020

Only 4 multiplications of length n/2 instead of 8!

22

Detour: Generalizing Karatsuba’s method

Only 4 triple multiplications of length n/2, instead of 8!

Recursion relation: T(n) ~ 4T(n/2)

23

Detour: Generalizing Karatsuba’s method

Only 4 triple multiplications of length n/2, instead of 8!

Recursion relation: T(n) ~ 4T(n/2) thus: T(n) = O(n?)

23

Detour: Generalizing Karatsuba’s method

Only 4 triple multiplications of length n/2, instead of 8!

Recursion relation: T(n) ~ 4T(n/2) thus: T(n) = O(n?)

Result (modified Toom-Cook): k pieces — O(n'°e:Gk=2)) runtime

23

Detour: Generalizing Karatsuba’s method

Only 4 triple multiplications of length n/2, instead of 8!

Recursion relation: T(n) ~ 4T(n/2) thus: T(n) = O(n?)

Result (modified Toom-Cook): k pieces — O(n'°e:Gk=2)) runtime

fe‘ Runtime ‘
2 O(n?)
3
4

O(n1.77»~)
O(n1.66-~-)

These runtimes are achieved with 2 ancilla qubits.

23

Depth considerations

Parallelization is natural—achieving depth O(n) is easy!

|

xxxxx

24

Depth considerations

Parallelization is natural—achieving depth O(n) is easy!

But O(n"8)/n = O(n°3®) is our lower bound: can we get there?

24

Depth considerations

Parallelization is natural—achieving depth O(n) is easy!

But O(n"8)/n = O(n°3®) is our lower bound: can we get there?

Claim: Can implement PhaseProduct and PhaseTripleProduct in sub-linear time,
using O(n) ancillas!

Suprisingly, multiplication itself is bottlenecked by QFT

24

Modular arithmetic

So far: have been using phase

25

Modular arithmetic

So far: have been using phase

(denominator matches order of QFT)

25

Modular arithmetic

So far: have been using phase

(denominator matches order of QFT)

Observation:

XyZ\ _ .(xy mod N)z
exp (27rl N) = exp (27TIN

25

Modular arithmetic

Goal: only use n bits for output modulo N

Observation:

XyZ\ .(xy mod N)z
exp (27‘&'/ N) = exp (Zﬂ'IN

Define
Xy mod N
W= —"———

N

26

Modular arithmetic

Goal: only use n bits for output modulo N

Observation:

XyZ\ .(xy mod N)z
exp (27‘&'/ N) = exp (Zﬂ'IN

Define
Xy mod N
W= —"———

N

Now, multiplication:
X} 10) = [x) [w)

26

Modular arithmetic

Goal: only use n bits for output modulo N

Observation:

XyZ\ .(xy mod N)z
exp (27‘&'/ N) = exp (Zﬂ'IN

Define
Xy mod N
W= —"———

N

Now, multiplication:
X} 10) = [x) [w)

Output register requires n + O(log(1/¢)) qubits

26

Classical-quantum Quantum-quantum
1 ancilla qubit 2 ancilla qubits
k| Gates | k| Gates |
2 | O(n>8) 2] o)

3 O(ﬂw‘%"') 3 O(n1.77---)
4 O(I’)“‘O"') 4 O(ﬂ1'66'”)

27

Classical-quantum Quantum-quantum
1 ancilla qubit 2 ancilla qubits
k| Gates | k| Gates |
2 | O(n>8) 2] o)
3 O(n“%”') 3 O(ﬂ1'77”')
4 O(H1AO---) 4 O(ﬂ1'66'”)
Implications:

Shor's algorithm: ©(n?4%) gates using 2n + O(log n) qubits

27

Classical-quantum Quantum-quantum
1 ancilla qubit 2 ancilla qubits
k| Gates | k| Gates |
2 | O(n>8) 2] o)
3 O(n“%”') 3 O(ﬂ1'77”')
4 O(H1AO---) 4 O(ﬂ1'66'”)
Implications:

Shor's algorithm: ©(n?4%) gates using 2n + O(log n) qubits
Exact QFT in O(n"%6) gates using 1 ancilla

27

Open Questions

- Can multiplication modN be performed with @(1) ancillas?

28

Open Questions

- Can multiplication modN be performed with @(1) ancillas?

- Can QFT be done in sub-linear depth without needing a lot of ancillas?

28

Open Questions

- Can multiplication modN be performed with @(1) ancillas?
- Can QFT be done in sub-linear depth without needing a lot of ancillas?

- Can we do any of these things with zero ancillas?

28

Open Questions

- Can multiplication modN be performed with @(1) ancillas?
- Can QFT be done in sub-linear depth without needing a lot of ancillas?
- Can we do any of these things with zero ancillas?

- How well can we optimize explicit circuits?

28

Open Questions

- Can multiplication modN be performed with @(1) ancillas?
- Can QFT be done in sub-linear depth without needing a lot of ancillas?
- Can we do any of these things with zero ancillas?

- How well can we optimize explicit circuits?

Thank you!

Greg Kahanamoku-Meyer — gkm@berkeley.edu

28

Backup

29

Fast classical-quantum multiplication: algorithm

PhaseProduct(g, |X) ,|2))

Input: Quantum state |x) |z), classical value ¢

Output: Quantum state exp(ipxz) |X) |z)

1. Split |x) and |z) in half, as |x1) |Xo) and |z1) |zo)

Apply PhaseProduct((2" — 2"/2)¢, |x1) , |z1))

Apply PhaseProduct((1—2"%)¢, [Xo) , |20))

Add |x1) to |Xo), and |z;) to |zo). Registers now hold |xq) [Xo + X1) |21) |20 + Z1).
Apply PhaseProduct(2"/2¢, |xo + X1 , |20 + 21)).

Subtract |x), |z1) to return to registers to [x1) |Xo) [21) |20).

on L 5 W N

30

