


Quantum computational advantage

Recent experimental demonstrations:

Largest experiments→ “impossible” to classically simulate

“... [Rule] out alternative [classical] hypotheses that might be

plausible in this experiment” [Zhong et al.]

Quantum is the only reasonable explanation for observed behavior
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“Black-box” proofs of quantumness

Efficiently-verifiable test that only quantum computers can pass.

For polynomially-bounded classical verifier:

Fully classical verifier (and comms.), single black-box prover,

superpolynomial computational separation
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NISQ verifiable quantum advantage

Trivial solution: Shor’s algorithm

... but we want to do near-term!
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Adding structure to sampling problems

Idea: some property of samples that we can check?

Generically: seems difficult to make work.

The point of random circuits is that they don’t have structure!

IQP circuits [Shepherd and Bremner, ’08]:

• Hide a secret string s in the quantum circuit

• Set up circuit so it is biased to generate samples x with xᵀ · s = 0.
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IQP circuits [Shepherd and Bremner, ’08]

Consider a matrix P ∈ {0, 1}k×n and “action” θ.

Let H =
∑

i

∏
j X

Pij
j
.

Example:

H = X0X1X3 + X1X2X4X5 + · · · (1)

Distribution of sampling result X:

Pr[X = x] =
∣∣∣〈x ∣∣∣ e−iHθ

∣∣∣0〉∣∣∣2 (2)

Bremner, Jozsa, Shepherd ’11: classically sampling worst-case IQP circuits

would collapse polynomial heirarchy

Bremner, Montanaro, Shepherd ’16: average case is likely hard as well
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IQP proof of quantumness [Shepherd and Bremner, ’08]

Let θ = π/8, and s (secret) and P have the form:

Gᵀ is generator of Quadratic Residue code, R random.

Pr[Xᵀ · s = 0] = E
x

[
cos2

(π

8
(1− 2wt(Gx))

)]

QR code: codewords have wt(c) mod 4 ∈ {0,−1}
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IQP proof of quantumness [Shepherd and Bremner, ’08]

Let θ = π/8, and s (secret) and P have the form:

Gᵀ is generator of Quadratic Residue code, R random.

Pr[Xᵀ · s = 0] = cos2
(π

8

)
≈ 0.85

QR code: codewords have wt(c) mod 4 ∈ {0,−1}
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IQP: Hiding s

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85

Best classical: Pr[Yᵀ · s = 0] = ?

Scrambling preserves quantum success rate.

Conjecture [SB ’08]: Scrambling P cryptographically hides G (and

equivalently s)
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IQP: Classical strategy

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85

Best classical: Pr[Yᵀ · s = 0]
?
= 0.5

Assuming s hidden, can classical do better than 0.5? Try to take

advantage properties of embedded code.

Consider choosing random d
$← {0, 1}n, and letting

y =
∑

p∈rows(P)
p·d=1

p

Then:

QR code codewords are 50% even parity, 50% odd parity.
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IQP: Classical strategy [SB ’08]

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85

Classical: Pr[Yᵀ · s = 0]
?
= 0.5

Consider choosing random d, e
$← {0, 1}n, and letting

y =
∑

p∈rows(P)
p·d=p·e=1

p

Then:

Fact: (Gd) · (Ge) = 1 iff Gd, Ge both have odd parity.

Thus y · s = 0 with probability 3/4!
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IQP: Can we do better classically? [GDKM ’19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

Consider choosing one random d
$← {0, 1}n, held constant

over many different ei
$← {0, 1}n

yi =
∑

p∈rows(P)
p·d=p·ei=1

p

yi · s = 1 iff Gd, Gei both have odd parity.

Gd has even parity⇒ all yi · s = 0

Let yi form rows of a matrix M, such that Ms = 0

Can solve for s! ... If M has high rank. Empirically it does!
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IQP: can it be fixed?

• Attack relies on properties of QR code

• Could pick a different G for which this attack would not succeed?

• Ultimately, would like to rely on standard cryptographic

assumptions...
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NISQ verifiable quantum advantage
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Interactive proofs of quantumness

Round 1: Prover commits to a specific quantum state

Round 2+: Verifier asks for measurement in specific basis

By randomizing choice of basis and repeating interaction,

can ensure prover would respond correctly in any basis

Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640).

Can be extended to verify arbitrary quantum computations! (arXiv:1804.01082)
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State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 collision-resistant (claw-free) function f .

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform

superposition

f←−−−−−−−−−−− Pick 2-to-1 function f∑
x
|x〉 |f (x)〉

Measure 2nd register as y
y−−−−−−−−−−−→ Store y as commitment

Prover has committed to the state (|x0〉+ |x1〉) |y〉
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LWE protocol

Prover Verifier

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform

superposition:
∑

x
|x〉 |f (x)〉

f←−−−−−−−−−−− Pick trapdoor claw-free

function f

Measure 2nd register as y
y−−−−−−−−−−−→ Compute x0, x1 from y using

trapdoor

Measure qubits of

|x0〉+ |x1〉 in given basis

basis←−−−−−−−−−−− Pick standard or Hadamard

basis

result−−−−−−−−−−−→ Validate result against x0, x1

Subtlety: claw-free does not imply hardness of

generating measurement outcomes!

Learning-with-Errors TCF has adaptive hardcore bit

Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640)
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Trapdoor claw-free functions

TCF Trapdoor Claw-free Adaptive hard-core bit

LWE [1] 3 3 3

x2 mod N [3] 3 3 7

Ring-LWE [2] 3 3 7

Diffie-Hellman [3] 3 3 7

BKVV ’20 [2]: Non-interactive protocol without adaptive hardcore bit,

in random oracle model

Can we remove AHCB in the standard model of cryptography?

[1] Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick ’20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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in random oracle model

Can we remove AHCB in the standard model of cryptography?

[1] Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick ’20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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LWE protocol

Prover Verifier

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform

superposition:
∑

x
|x〉 |f (x)〉

f←−−−−−−−−−−− Pick trapdoor claw-free

function f

Measure 2nd register as y
y−−−−−−−−−−−→ Compute x0, x1 from y using

trapdoor

Measure qubits of

|x0〉+ |x1〉 in given basis

basis←−−−−−−−−−−− Pick standard or Hadamard

basis
result−−−−−−−−−−−→ Validate result against x0, x1

Replace Hadamard basis measurement with “1-player CHSH”

Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640)
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Interactive measurement: computational Bell test

Replace Hadamard basis measurement with two-step process:

“condense” x0, x1 into a single qubit, and then do a “Bell test.”

10100111100
11010110011
11101100100
10011000011

.

.

.
.
.
.

.

.

.

|x0〉 |x0 · r〉+ |x1〉 |x1 · r〉
r←−−−−−−−−−−− Pick random bitstring r

Measure all but ancilla in

Hadamard basis

d−−−−−−−−−−−→

Now single-qubit state: |0〉 or |1〉 if x0 · r = x1 · r, otherwise |+〉 or |−〉.
Polarization hidden via:

Cryptographic secret (here)⇔ Non-communication (Bell test)

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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|x0〉 |x0 · r〉+ |x1〉 |x1 · r〉
r←−−−−−−−−−−− Pick random bitstring r

Measure all but ancilla in

Hadamard basis

d−−−−−−−−−−−→

Measure qubit in basis
basis←−−−−−−−−−−− Pick (Z + X) or (Z − X) basis
result−−−−−−−−−−−→ Validate against r, x0, x1, d

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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Computational Bell test: classical bound

Run protocol many times, collect statistics.

ps: Success rate for standard basis measurement.

pCHSH: Success rate when performing CHSH-type measurement.

Under assumption of claw-free function:

Classical bound: ps + 4pCHSH − 4 < negl(n)

Ideal quantum: ps = 1,pCHSH = cos2(π/8)

ps + 4pCHSH − 4 =
√
2− 1 ≈ 0.414

Note: Let ps = 1. Then for pCHSH:

Classical bound 75%, ideal quantum ∼ 85%. Same as regular CHSH!

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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Challenges for implementation

• Partial measurement

• Required for multi-round classical interaction

• Fidelity requirement

• High fidelity needed to pass classical bound

• Circuit sizes

• Need to implement public-key crypto. on a superposition
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Partial measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!
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Technique: postselection

How to deal with high fidelity requirement? Need ∼ 83% fidelity in

general to pass.

Can show: a prover holding (|x0〉+ |x1〉) |y〉 with ε phase coherence

passes!

When we generate
∑

x |x〉 |f (x)〉, add redundancy to f (x), for bit flip

error detection!
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Technique: postselection

How to deal with high fidelity requirement? Need ∼ 83% fidelity in

general to pass.
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Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

Getting rid of adaptive hardcore bit helps!

x2 mod N and Ring-LWE have classical circuits as fast as O(n log n)...

but they are recursive and hard to make reversible.

Protocol allows us to make circuits irreversible!
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Technique: taking out the garbage

Goal: Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let U ′
f be a unitary generating garbage bits gf (x):

Can we “measure them away” instead?
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Goal: Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let U ′
f be a unitary generating garbage bits gf (x):

Lots of time and space overhead!

Can we “measure them away” instead?

26



Technique: taking out the garbage

Goal: Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let U ′
f be a unitary generating garbage bits gf (x):

Can we “measure them away” instead?

26



Technique: taking out the garbage

Measure garbage bits gf (x) in Hadamard basis, get some string h.

End up with state:

∑
x

(−1)h·gf (x) |x〉 |f (x)〉

In general useless: unique phase (−1)h·gf (x) on every term.

But after collapsing onto a single output:

[(−1)h·gf (x0) |x0〉+ (−1)h·gf (x1) |x1〉] |y〉

Verifier can efficiently compute gf (·) for these two terms!

Can directly convert classical circuits to quantum!

1024-bit x2 mod N costs only 106 Toffoli gates.
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Paths forward

Bottleneck: Evaluating TCF on quantum superposition

“In the box” ideas (not necessarily bad):

• Find more efficient TCFs

• Better quantum circuits for TCFs

• ... public-key cryptography is just slow

“Box-adjacent” ideas:

• Explore other protocols (fix IQP and make it fast?)

• Remove trapdoor—hash-based cryptography?

Way outside the box?
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Backup!

29



TCF constructions

TCF A.H.C.B. Gate count n for hardness

LWE [1] 3 O(n2 log2 n) 104

Ring-LWE [2] 7 O(n log2 n) 103

x2 mod N [3] 7 O(n log n) 103

DDH [3] 7 O(n3 log2 n) 102

A.H.C.B. = ”adaptive hard core bit”

Remarks:

• Removing adaptive hardcore bit requirement helps!

• Can’t just plug in n—constant factors

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick ’20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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x2 mod N

y = x2 mod N with N = pq

Each y has 4 roots (x0, x1, −x0, −x1).

Set domain to [0,N/2] to make it 2-to-1

• Finding a claw as hard as factoring N

• Features:

• Simple to implement, asymptotically fast algorithms

• Classical hardness in practice extremely well studied

• O(n log n log log n) Schonhage-Strassen multiplication seems out

of reach, but

• O(n1.58) Karatsuba mult. beats naive O(n2) alg. at n ∼ 100

(much earlier than in the classical case!)

Q. advantage in 106 Toffoli gates
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Trapdoor from Decisional Diffie-Hellman (DDH)

Trapdoor functions from DDH [1, 2]: linear algebra in the exponent

Gen(1λ)

1. Choose group G of order q ∼ O(2λ), and generator g

2. Choose random invertible M ∈ Zk×k
q for k > log q

3. Compute gM = (gMij) ∈ Gk×k

4. Return pk = (gM), sk = (g,M)

[1] Peikert, Waters. “Lossy trapdoor functions and their applications” (2008)

[2] Freeman, Goldreich, Klitz, Rosen, Segev. “More constructions of lossy and correlation-secure

trapdoor functions” (2010)
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Trapdoor from Decisional Diffie-Hellman (DDH)

Trapdoor functions from DDH [1, 2]: linear algebra in the exponent

pk = (gM), sk = (g,M). On input x ∈ {0, 1}k:

Evaluation: f (x) = gMx

Inversion: f−1(f (x),M) = gM
−1Mx = gx

Easy to find x from gx by brute force

Security proof: Given gM, DDH hides rank of M. Inversion would imply

algorithm to determine if M is full rank.

[1] Peikert, Waters. “Lossy trapdoor functions and their applications” (2008)

[2] Freeman, Goldreich, Klitz, Rosen, Segev. “More constructions of lossy and correlation-secure
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TCF from DDH

Gen(1λ)

1. Choose group G of order q ∼ O(2λ), and generator g

2. Choose random invertible M ∈ Zk×k
q for k > log q

3. Compute gM = (gMij) ∈ Gk×k

4. Choose s ∈ {0, 1}k

5. Return pk = (gM,gMs), sk = (g,M, s)

Evaluation:

Let d ∼ O(k2). Define two functions fb : Zk
d → Gk:

f0(x) = gMx f1(x) = gMxgMs = gM(x+s)

Inversion: f−1(f0(x),M) = gM
−1Mx = gx (poly-time brute force)

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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TCF from DDH: does it help?

• Via elliptic curves, can significantly reduce space requirement

• But quantum circuit for group operation is complicated

• Need to perform as many group operations as Shor’s algorithm!

• Reversible Euclidean algorithm is hard, maybe irreversible

optimization can help?
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The CHSH game (Bell test)

Two-player cooperative game.

If anyone receives tails, want A = B. If both get heads, want A 6= B.

Two players sharing a Bell pair:
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Full protocol
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