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Quantum computational advantage

Recent experimental demonstrations:

Largest experiments → impossible to classically simulate

“... [Rule] out alternative [classical] hypotheses that might be
plausible in this experiment” [Zhong et al.]

Quantum is the only reasonable explanation for observed behavior
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“Black-box” quantum computational advantage

Stronger: rule out all classical hypotheses, even pathological!

Proof not specific to quantum mechanics: disprove null hypothesis
that output was generated classically.

3



“Black-box” quantum computational advantage

Stronger: rule out all classical hypotheses, even pathological!

Proof not specific to quantum mechanics: disprove null hypothesis
that output was generated classically.

3



“Black-box” quantum computational advantage

Stronger: rule out all classical hypotheses, even pathological!

Proof not specific to quantum mechanics: disprove null hypothesis
that output was generated classically.

3



“Black-box” quantum computational advantage

Stronger: rule out all classical hypotheses, even pathological!

Proof not specific to quantum mechanics: disprove null hypothesis
that output was generated classically.

3



NISQ verifiable quantum advantage

Trivial solution: Shor’s algorithm

... but we want to do near-term!

NISQ: Noisy Intermediate-Scale Quantum devices
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Making number theoretic problems less costly

Fully solving a problem like factoring is “overkill”

Can we demonstrate quantum capability without needing to solve
such a hard problem?
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Zero-knowledge proofs: differentiating colors

Challenge: You have a friend who is red/green colorblind. How do
you convince them that a red and a green ball that appear identical

are different?

without actually telling them the colors?

Solution:

1. They show you one ball, then hide it behind their back
2. They pull out another, you tell them same or different

This constitutes a zero-knowledge interactive proof.

Color blind friend ⇔ Classical verifier
Seeing color ⇔ Quantum capability
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Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

Round 1: Prover commits to a specific quantum state

Round 2: Verifier asks for measurement in specific basis

By randomizing choice of basis and repeating interaction,
can ensure prover would respond correctly in any basis

Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640).

Can be extended to verify arbitrary quantum computations! (arXiv:1804.01082)
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State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f , there exist (x0, x1) such that y = f (x0) = f (x1).

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform
superposition

f←−−−−−−−−−−− Pick 2-to-1 function f∑
x |x〉 |f (x)〉

Measure 2nd register as y y−−−−−−−−−−−→ Store y as commitment

Prover has committed to the state (|x0〉 + |x1〉) |y〉
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State commitment (round 1): trapdoor claw-free functions

Prover has committed to (|x0〉 + |x1〉) |y〉 with y = f (x0) = f (x1)

Source of power: cryptographic properties of 2-to-1 function f

• Claw-free: It is cryptographically hard to find any pair of
colliding inputs

• Trapdoor: With the secret key, easy to classically compute the
two inputs mapping to any output

Cheating classical prover can’t forge the state;
classical verifier can determine state using trapdoor.

The only path to a valid state without trapdoor is by
superposition + wavefunction collapse—inherently quantum!
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Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18

Prover Verifier
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Evaluate f on uniform
superposition:

∑
x |x〉 |f (x)〉

f←−−−−−−−−−−− Pick trapdoor claw-free
function f

Measure 2nd register as y y−−−−−−−−−−−→ Compute x0, x1 from y using
trapdoor

Measure qubits of
|x0〉+ |x1〉 in given basis

basis←−−−−−−−−−−− Pick Z or X basis

result−−−−−−−−−−−→ Validate result against x0, x1

Subtlety: claw-free does not imply hardness of
generating measurement outcomes!

Learning-with-Errors TCF has adaptive hardcore bit

arXiv:1804.00640. Can be extended to verify arbitrary quantum computations! arXiv:1804.01082
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Trapdoor claw-free functions

TCF Trapdoor Claw-free Adaptive hard-core bit
LWE [1] 3 3 3

Ring-LWE [2] 3 3 7

x2 mod N [3] 3 3 7

Diffie-Hellman [3] 3 3 7

BKVV ’20 removes need for AHCB in random oracle model. [2]

Can we do the same in standard model?

Yes! [3]

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick ’20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18

Prover Verifier
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Evaluate f on uniform
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∑
x |x〉 |f (x)〉

f←−−−−−−−−−−− Pick trapdoor claw-free
function f

Measure 2nd register as y y−−−−−−−−−−−→ Compute x0, x1 from y using
trapdoor

Measure qubits of
|x0〉+ |x1〉 in given basis

basis←−−−−−−−−−−− Pick Z or X basis

result−−−−−−−−−−−→ Validate result against x0, x1
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Interactive measurement: computational Bell test

Replace X basis measurement with two-step process:
“condense” x0, x1 into a single qubit, and then do a “Bell test.”

10100111100
11010110011
11101100100
10011000011

...
...

...

|x0〉 |x0 · r〉+ |x1〉 |x1 · r〉
r←−−−−−−−−−−− Pick random bitstring r

Measure all but ancilla in X
basis

d−−−−−−−−−−−→

Now single-qubit state: |0〉 or |1〉 if x0 · r = x1 · r, otherwise |+〉 or |−〉.
Polarization hidden via:

Cryptographic secret (here) ⇔ Non-communication (Bell test)

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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Computational Bell test: classical bound

Run protocol many times, collect statistics.

pZ : Success rate for Z basis measurement.

pCHSH: Success rate when performing CHSH-type measurement.

Under assumption of claw-free function:

Classical bound: pZ + 4pCHSH − 4 < negl(n)
Ideal quantum: pZ = 1,pCHSH = cos2(π/8)

pZ + 4pCHSH − 4 =
√
2− 1 ≈ 0.414

Note: Let pZ = 1. Then for pCHSH:
Classical bound 75%, ideal quantum ∼ 85%. Same as regular CHSH!

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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Moving towards full efficiently-verifiable quantum adv. on NISQ

Interaction

• Intermediate measurement: need to measure subsystem while
maintaining coherence on other qubits

• Implemented by the experiments!

Fidelity (without error correction)

• Need to pass classical threshold
• Postselection scheme drastically improves required fidelity

Circuit sizes

• Removing need for adaptive hardcore bit allows “easier” TCFs
• Measurement-based uncomputation scheme
• ... hopefully can continue making theory improvements!
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Intermediate measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland (→ Duke)

First demonstration of protocols, in trapped ions! (arXiv:2112.05156)

Prof. Christopher MonroeDr. Daiwei Zhu Prof. Crystal Noel

and others!
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Interactive proofs on a few qubits
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Interactive measmt.
Delayed measmt.

GDKM, D. Zhu, et al. (arXiv:2112.05156)
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Technique: postselection

How to deal with high fidelity requirement? Naively need ∼ 83%
overall circuit fidelity to pass.

A prover holding (|x0〉 + |x1〉) |y〉 with ε phase coherence passes!

When we generate
∑

x |x〉 |f (x)〉, add redundancy to f (x), for bit flip
error detection!
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Technique: postselection

How to deal with high fidelity requirement? Naively need ∼ 83%
overall circuit fidelity to pass.
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Here: make transformation x2 mod N⇒ (kx)2 mod k2N
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Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

Getting rid of adaptive hardcore bit helps!

x2 mod N and Ring-LWE have classical circuits as fast as O(n log n)...

but they are recursive and hard to make reversible.

Protocol allows us to make circuits irreversible!
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Technique: taking out the garbage

Goal: Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let U ′
f be a unitary generating garbage bits gf (x):

Can we “measure them away” instead?
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Technique: taking out the garbage

Measure garbage bits gf (x) in X basis, get some string h. End up with
state:

∑
x
(−1)h·gf (x) |x〉 |f (x)〉

In general useless: unique phase (−1)h·gf (x) on every term.

But after collapsing onto a single output:

[(−1)h·gf (x0) |x0〉 + (−1)h·gf (x1) |x1〉] |y〉

Verifier can efficiently compute gf (·) for these two terms!

Can directly convert classical circuits to quantum!
1024-bit x2 mod N in depth 105 (and can be improved?)
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Quantum circuits for x2 mod N

Goal: U |x〉 |0〉 = |x〉
∣∣x2 mod N

〉

Idea: do something really quantum: compute function in phase!

Decompose this as

U = (I ⊗ IQFTN) · Ũ · (I ⊗ QFTN)

with
Ũ |x〉 |z〉 = exp

(
2πi x

2

N
z
)

|x〉 |z〉

Advantages:

• Everything is diagonal (it’s just a phase)!
• Modulo is automatic in the phase
• Simple decomposition into few-qubit gates
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Implementation

New goal: Ũ |x〉 |z〉 = exp
(
2πi x

2

N z
)

|x〉 |z〉

Decompose using “grade school” integer multiplication:

a · b =
∑
i,j

2i+jaibj

x2z =
∑
i,j,k

2i+j+kxixjzk

exp

(
2πi x

2

N
z
)

=
∏
i,j,k

exp

(
2πi2

i+j+k

N
xixjzk

)

23



Implementation
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• Binary multiplication is AND

• “Apply phase whenever xi = xj = zk = 1”
• These are CCPhase gates (of arb. phase)!
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Leveraging the Rydberg blockade

QFT Ũ IQFT
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Paths forward

Bottleneck: Evaluating TCF on quantum superposition

“In the box” ideas (not necessarily bad):

• Find more efficient TCFs
• Better quantum circuits for TCFs

“Box-adjacent” ideas:

• Explore other protocols (fix IQP and make it fast?)
• Symmetric key/hash-based cryptography?

Way outside the box?
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Backup!
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NISQ verifiable quantum advantage

NISQ: Noisy Intermediate-Scale Quantum devices
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Adding structure to sampling problems

Generically: seems hard.

The point of random circuits is that they don’t have structure!

Example: sampling “IQP” circuits (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2009]: Can hide a secret in H, such that evolving
and sampling gives results correlated with secret

[Bremner, Josza, Shepherd 2010]: classically simulating IQP
Hamiltonians is hard

[GDKM 2019]: Classical algorithm to extract the secret from H

Adding structure opens opportunities for classical cheating
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Decisional Diffie-Hellman (DDH)

Problem (not TCF): Consider a group G of order N, with generator g.
Given the tuple (g,ga,gb,gc), determine if c = ab.

Elliptic curve crypto.: logN ∼ 160 bits is as hard as 1024 bit factoring!!

How to build a TCF?

Trapdoor [Peikert, Waters ’08; Freeman et al. ’10]: linear algebra in
the exponent

Claw-free [GDKM et al. ’21 (arXiv:2104.00687)]: collisions in linear
algebra in the exponent!
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Full protocol
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