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Multiplication on quantum computers

Today's goal: implement the following unitaries

Ugxq X) [Y) W) = X} y) [w + xy)

Ucxq(a) [X) [W) = [X) |w + ax)

.. with as few gates and qubits as possible.
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Running time: O(n?) operations



Background: schoolbook multiplication

Given two n-bit numbers x and y, what if we use base b = 2"/2?

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4




Background: schoolbook multiplication

Given two n-bit numbers x and y, what if we use base b = 2"/2?

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4

Xy = X1y1b? + Xoy1b + x1y0b + XoYo



Background: schoolbook multiplication

Given two n-bit numbers x and y, what if we use base b = 2"/2?

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4

Xy = X1y1b? + Xoy1b + x1y0b + XoYo

Time remains O(n?), because 4(n/2)? = n?
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Background: Karatsuba multiplication

Question: why don’'t we always do this, classically?

Answer: the extra complexity isn’t always worth it!

.. but for large enough values, it is

GNU multiple-precision arithmetic library cutoff: 2176 bit numbers
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Can these fast circuits be made quantum?

Challenge: making recursive algorithms reversible

—— —f&= Work Qubits
- 4=;§ Kowada et al. ‘06 | O(n'58" |
\45 owada € a.y (ﬂ )
—— Parentetal. '18 | O(n"*)
i Gidney '19 O(n)
\ = Gidney 19 requires over 12,000 ancilla
. ==<  qubits for 2048-bit multiplication.
Z» &€ Isit possible to do better?
\% Result: Fast multiplication using 1 ancilla
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A fundamentally quantum way of doing arithmetic

How do we apply exp (2“2'fyz)?

XYZ =3k 2122kxy;zp

2mixyz 2mi2ititk
exp < on ) = HCXp (an‘ylzh
I,j,k

Xi,Yj,Zk are binary values—apply phase only if they all are equal to 1!

A series of CCR,, gates between the bits of |x), |y), and |z)!

1
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A fundamentally quantum way of doing arithmetic

2mixyz itk
exp ( on ) = Hexp (ZHX,'ijk

ijR

The downside: For n-bit numbers, this requires n* gates!

A modest improvement: classical-quantum multiplication ¢(a) |x) |0) = |x) |ax)

2miaxz 2mia2i™
exp 2” = HCXp TX,ZJ

i

Here: O(n?) controlled phase rotations (matches Schoolbook algorithm)
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Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |2) = exp (i¢x2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Previously:

exp (ipxz) = Hexp (/¢2’+fxz)

I
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Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)
We want to split the phase ¢xz into the sum of many phases, which are easy to implement.
Plugging in Karatsuba:

exp (igpxz) = exp (Ip2"x121)
- exp (i¢XoZo)

- exp (i¢>2”/2((xo + x1)(2o + 21) — XoZo — qu1))

How are we supposed to reuse values in the phase?

14



Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Karatsuba:
Xz = 2"x121 + 2" ((Xo + X1) (20 + Z1) — XoZo — X121) + XoZo



Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Re-ordering Karatsuba:

XZ = (2” — 2n/2)X121 aF Zn/z(XQ aF X])(Zo aF 21) aF (1 = 2n/2)X020



Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢xz) |X) |z)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Plugging in reordered Karatsuba:
exp (igxz) = exp (i</>(2” _ 2”/2)qu1)
- exp <i¢(1 — 2”/2)XOZO>

- exp (i(bZ”/z(Xo +x1)(Zo +Z1))



Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢xz) |X) |z)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.
Plugging in reordered Karatsuba:

exp (igxz) =exp (igxiz7) 1= (2" —2")¢
- exp (IpaXoZo) ¢ =(1-2"2)¢
-exp (Ig3(Xo + X1)(20 + 21)) ¢z =2"2¢



Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢xz) |X) |z)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Plugging in reordered Karatsuba:

exp (igxz) =exp (igxiz7) 1= (2" —2")¢
- exXp (i¢2XoZ0) ¢2 = (1 - 2ﬂ/2)¢
-exp (Ip3(Xo + X1)(Z0 + 1)) ¢z =2"2¢

Each of these has the same structure, but on half as many qubits — do it recursively!



Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

exp (igxz) =exp (igxaz7) P = (2" —2"%)¢
- exp (I¢2X0Zo) ¢ =(1-2"7)¢
- exp (i¢3(X0 +X1)(ZO +Z1)) 3 = 2”/2¢

Recursion relation: T(n) =3T(n/2)



Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

exp (igxz) =exp (igxaz7) P = (2" —2"%)¢
- exp (I¢2X0Zo) ¢ =(1-2"7)¢
- exp (i¢3(X0 +X1)(ZO +Z1)) 3 = 2”/2¢

Recursion relation: T(n) = 3T(n/2) = O(n'°&:3) = O(n'*%) gates!
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Total number of ancillas: 1
1 bit n/2 bits

Idea: “Shave off” the high bit before recursing



Making it go faster

So far: O(n"38) gates using 1 ancilla

19



Making it go faster

So far: O(n"38) gates using 1 ancilla

Can we make it go faster?
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Background: Toom-Cook multiplication

Let b = 2/2,

X = X1b + Xo

Z=2z21b+ 2

n/2 bits n/2 bits
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Background: Toom-Cook multiplication

Let b = 27/,

k=1
X = Zx,b’
]
k—1 ;
7= zt/
i=0
n/k bits  n/k bits  n/k bits n/k bits
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Background: Toom-Cook multiplication

Let b = 27/,

n/k bits  n/k bits  n/k bits n/k bits

Schoolbook: k* multiplications of size n/k
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Background: Toom-Cook multiplication

R—

X(b) = 3" xib p(b) = x(b)2(b)
e

=2 e p2"/") = x2"/Myz(2")

Facts:

- For any point w, p(w) = x(w)z(w)

- p(b) has degree 2(k — 1) = uniquely determined by g = 2(R — 1) + 1 points wy!
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Background: Toom-Cook multiplication

n/k bits  n/k bits  n/k bits n/k bits

1. Compute x(wy), z(w,) at —

o Z z Z --- Z,
q points w, 2
n/kbits  n/kbits  n/k bits  n/k bits n/k bits  n/k bits

S R N ||

Only 2k — 1 multiplications of size n/k!
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Background: Toom-Cook multiplication

n/k bits  n/k bits  n/k bits n/k bits
1. Compute x(wy), z(w) at —
g points w; - -

2. Pointwise multiply

n/kbits  n/kbits  n/k bits  n/k bits n/k bits  n/k bits

S R N ||

Only 2k — 1 multiplications of size n/k!
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Background: Toom-Cook multiplication

n/k bits  n/k bits  n/k bits n/k bits

1. Compute x(wy), z(w,) at —

qpomtg Wp i1
2. Pointwise multiply
3. Interpolate p(b) n/kbits  n/kbits  n/kbits  n/k bits n/kbits  n/k bits

S R N ||

Only 2k — 1 multiplications of size n/k!
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Background: Toom-Cook multiplication

n/k bits  n/k bits  n/k bits n/k bits

1. Compute x(wg), Z(wg) at |
q points we --- I

2. Pointwise multiply

3. Interpolate p(b) n/kbits  n/kbits  n/kbits  n/k bits n/kbits  n/k bits
4. Evaluate p(27/%)

S R N ||

Only 2k — 1 multiplications of size n/R!

22



Karatsuba in the language of Toom-Cook

Karatsuba is Toom-Cook with k = 2
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Karatsuba in the language of Toom-Cook

Karatsuba is Toom-Cook with k = 2

Letw € {0, 00,1}
x(b) = x1b + Xo
z(b) =z:b + z¢

p(b) = x(b)z(b) has degree 2

p(b) = p(c0)b® + [p(1) — p(o0) — p(0)] b+ p(0)
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x(b) = x1b + Xo
2(b) = 21b + 2, X(0) =%
X(00) = Xq
p(b) = x(b)z(b) has degree 2 X(1) = Xo + Xq

p(b) = X1qu2 aF [(Xo =F Xq)(Zo aF Zq) — X1Z1 — XQZo] b + X0z
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Karatsuba in the language of Toom-Cook

Karatsuba is Toom-Cook with k = 2

Let w € {0, 00,1}

x(b) = x1b + xo
z(b) = z:b + 2o X(0) =%
X(00) = X1
p(b) = x(b)z(b) has degree 2 x(1) = X0 + X

P(2"/2) = x1212" + [(Xo + X1)(20 + Z1) — X121 — XoZ0] 2"/ + XoZo
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Karatsuba in the language of Toom-Cook

Karatsuba is Toom-Cook with k = 2

Let w € {0, 00,1}

x(b) = x1b + xo
z(b) = z:b + 2o X(0) =%
X(00) = X1
p(b) = x(b)z(b) has degree 2 x(1) = X0 + X

XZ = x12:2" + [(Xo + X1)(Z0 + 21) — X121 — X0Z0] 2"/? + X020

23



Complexity vs. k

Toom-Cook has asymptotic complexity O(n'09x(2k=1))
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Algorithm | Gate count

Schoolbook O(n?)
k=2 O(n'8)
k=3 O(n"46-)
k=4 O(rﬂ 40y
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Algorithm | Gate count

Schoolbook O(n?)
k=2 O(n'8)
k=3 O(n"46-)
k=4 O(rﬂ 40y

These are the gate counts for our classical-quantum multiplication!

Complexity vs. k

Toom-Cook has asymptotic complexity O(n'09x(2k=1))
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Overhead moves to classical precomputation

n/k bits  n/kbits  n/k bits  n/k bits n/k bits  n/k bits
1. Compute x(w), z(wy) at

S S N ||

g points wy
2. Pointwise multiply
3. Interpolate p(b)
4. Evaluate p(2"/F) s

oxz = Z Bex(Wp)z(wy) (1)

£=0
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S S N ||

g points wy

2. Pointwise multiply

3. Inter
4. Eva ) -
oxz = Z Bex(Wp)z(wy) (1)
=0

25



Overhead moves to classical precomputation

n/k bits  n/kbits  n/k bits  n/k bits n/k bits  n/k bits
1. Compute x(w), z(wy) at

S S N ||

g points wy

2. Pointwise multiply

3. Inter
4. Eva ) -
oxz = Z Bex(Wp)z(wy) (1)
=0

Much of the overhead has moved to classical precomputation!
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Fast quantum-quantum multiplication

Goal: U [x) |y) [0) = |x) |y} [xy)

26



Fast quantum-quantum multiplication

Goal: Apply phase exp (%Txyz); X, Y, and z are quantum
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Fast quantum-quantum multiplication

Goal: Implement PhaseTripleProduct(¢) |x) |v) |2) = exp (ipxyz) |X) |y) |2)

Previously:
exp (ipxyz) = Hexp (i¢2’+f+’?xiyjzk) (n® doubly-controlled phase rotations)
ijk
Question: How would you classically compute a triple product like xyz?

Answer: Use parentheses! xyz = x(yz). Then asymptotic cost is the same

Doesn't work in the phase!!

26



Generalizing Toom-Cook

Goal: Compute xyz “all at once”
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Goal: Compute xyz “all at once”

p(b) has degree g = 2k — 1
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Generalizing Toom-Cook

Goal: Compute xyz “all at once”

p(b) has degree g = 2k — 1 p(b) has degree g =3k —2

27



Example: Generalizing Karatsuba’s method

For k = 2, we have g = 4. Using w; € {0, 00,1, —1}:
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Example: Generalizing Karatsuba’'s method

For k = 2, we have g = 4. Using w; € {0, 00,1, —1}:

Xyz :<23n/2 - 2H/Z)X1Y1Z1

+ (2" 4+ 2% (x0 + x1) (Vo + 1) (20 + 21)

(2" = 2"%)(xo — x1) (Yo — Y1) (20 — 21)

1—2")xoY020

N[ =N =

+
+

—
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Example: Generalizing Karatsuba’s method

For k = 2, we have g = 4. Using w; € {0, 00,1, —1}:

Xyz :<23n/2 - 2H/Z)X1Y1Z1

+ (2" 4+ 2% (x0 + x1) (Vo + 1) (20 + 21)

(2" = 2"%)(xo — x1) (Yo — Y1) (20 — 21)

1—2")xoY020

N[ =N =

+
+

—

Only 4 multiplications of length n/2 instead of 8!
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Recursion relation: T(n) ~ 4T(n/2)
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Example: Generalizing Karatsuba’s method

Only 4 multiplications of length n/2, instead of 8!

Recursion relation: T(n) ~ 4T(n/2) thus: T(n) = O(n?)

As before: k > 2 is faster.

| k | Gates O(no&:Cr-2) |

1 O(n?)
p) O(n?)
3 O(n1.77-- )
4 O(n1.66~ )
5 O(n1.59~- )
6 O(HW.ES-» )
: 29




Summary so far

- Circuits for phase rotations ¢xz or ¢xyz in sub-quadratic time, using 1 or 2 ancillas
respectively
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Summary so far

- Circuits for phase rotations ¢xz or ¢xyz in sub-quadratic time, using 1 or 2 ancillas
respectively
- Sandwiched by QFTs, this implements multiplication

Next up:

- Sub-quadratic-time exact QFT with 1 ancilla
- Depth

- Modular multiplication

- Applications

- Shor's algorithm
- Efficiently-verifiable quantum advantage

30



Fast exact quantum Fourier transform

[Cleve and Watrous 2000]: QFT can be defined recursively.
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Fast exact quantum Fourier transform

[Cleve and Watrous 2000]: QFT can be defined recursively.

For any m < n, we may implement QFTn:
1. Apply QFT,m on first m qubits

2. Apply phase rotation 2mwxz/2"

- |x) is value of first m qubits
- |z) is value of final n — m qubits

3. Apply QFTy-» on final n — m qubits
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1. Apply QFT,m on first m qubits

2. Apply phase rotation 2mwxz/2"
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Fast exact quantum Fourier transform

[Cleve and Watrous 2000]: QFT can be defined recursively.

For any m < n, we may implement QFTn:
1. Apply QFT,m on first m qubits

2. Apply phase rotation 2mwxz/2"

- |x) is value of first m qubits
- |z) is value of final n — m qubits

3. Apply QFTy-» on final n — m qubits
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Immediately gives us sub-quadratic exact QFT using only 1 ancilla.
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Depth considerations
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Depth considerations

Parallelization is natural.

/|

NG ZINC N N AN SN SN SN N

with—can do k sub-products in

x|

x|

ST

.

We have k sub-registers to work —_— : /
[ o]

parallel. ——
T

[__otx ]

Depth: PhaseProduct in O(n'°&2) and PhaseTripleProduct in O(n'8:3)

using a few more ancillas
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Depth considerations

Parallelization is natural.

with—can do k sub-products in
parallel.

/|

NG ZINC N N AN SN SN SN N

x|

x|

ST

.

4 [ x| —

We have k sub-registers to work —_— : /
[ o]

[ ]

T

[__otx ]

Challenge for multiply: How to do the QFT in sublinear depth

with even O(n) ancillas?
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Modular arithmetic

So far: have been using phase
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Modular arithmetic

So far: have been using phase

(denominator matches order of QFT)
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Modular arithmetic

So far: have been using phase

(denominator matches order of QFT)

Observation:

XyZ\ _ .(xy mod N)z
exp (27rl N ) = exp (27TIN
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Modular arithmetic

Goal: only use n bits for output modulo N

Observation:

XyZ\ .(xy mod N)z
exp (27‘&'/ N ) = exp (Zﬂ'IN

Define
Xy mod N
W= —"———

N
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Observation:
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Define
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Modular arithmetic

Goal: only use n bits for output modulo N

Observation:

XyZ\ .(xy mod N)z
exp (27‘&'/ N ) = exp (Zﬂ'IN

Define
Xy mod N
W= —"———

N

Now, multiplication:
X} 10) = [x) [w)

Output register requires n + O(log(1/¢)) qubits

34



Application: Shor’s algorithm

For Shor's algorithm: O(n) modular classical-quantum multiplications
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Application: Shor’s algorithm

For Shor's algorithm: O(n) modular classical-quantum multiplications

Using phase modulo and k = 4 multiplier:

Gates: O(n**)
Total qubits: 2n + O(log(n/e))

(Here € is error across the whole algorithm)

35



Application: Shor’s algorithm

Cost estimates for one 2048-bit classical-quantum multiplication: (here not modular)

Algorithm Gate count (millions) Ancilla qubits

Complexity ool CR¢ Other

Thiswork | O | 06 09 | 2.1 | 50
Karatsuba [1] O(n'8) 5.6 — 34 12730
Windowed [1] O(n?) 1.8 — 2.5 4106
Schoolbook [1] 0(n?) 6.4 — 38 2048*

(Note: ~ 15% of the CR4 come from approximate QFTs with € = 10~")

[1] C. Gidney, “Windowed quantum arithmetic.” (arXiv:1905.07682)
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Application: Shor’s algorithm

Cost estimates for one 2048-bit classical-quantum multiplication: (here not modular)

Algorithm Gate count (millions) Ancilla qubits

Complexity ool CR¢ Other

Thiswork | O | 06 09 | 2.1 | 50
Karatsuba [1] O(n'8) 5.6 — 34 12730
Windowed [1] O(n?) 1.8 — 2.5 4106
Schoolbook [1] 0(n?) 6.4 — 38 2048*

(Note: ~ 15% of the CR4 come from approximate QFTs with € = 10~")

Open g.: Can we use windowing with our construction?

[1] C. Gidney, “Windowed quantum arithmetic.” (arXiv:1905.07682)
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Application: efficiently-verifiable quantum advantage

Protocol for a “proof of quantumness” requires evaluating f(x) = x> mod N
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Application: efficiently-verifiable quantum advantage

Protocol for a “proof of quantumness” requires evaluating f(x) = x> mod N

Cost estimates for protocol with 1024-bit N:

Algorithm Total qubits

‘ Gate count (millions)

Toffoli C*R; Other

Gate optimized 0.7 0.9 0.7 2400
Balanced 0.9 1.0 0.9 2070

Qubit optimized 2.2 2.0 2.2 1560
“Digital” Karatsuba [2] 1.6 — 1.6 6801
“Digital” Schoolbook [2] | 3.5 — 29 4097
Prev. Fourier 1 [2] — 539 — 1025
Prev. Fourier 2 [2] — 35 — 2062

[2] GDKM, Choi, Vazirani, Yao. “Efficiently-verifiable quantum advantage from a computational Bell test” (arXiv:2104.00687)
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Classical-quantum Quantum-quantum
1 ancilla qubit 2 ancilla qubits
| k| Gates | | k| Gates |
O(n">8) 2 O(n?)
O(I’ﬂ'%m) 3 O(n1.77--~)
O(n1.40---) A (/)(n1.66---)
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Classical-quantum Quantum-quantum
1 ancilla qubit 2 ancilla qubits
| k| Gates | | k| Gates |
O(n">8) 2 O(n?)
O(nl%u-) 3 O(n1.77--~)
O(n1.40---) A (/)(n1.66---)
.. In practice:
Implications:

Low overheads—circuits are useful at

Shor’s algorithm: O@(n?*) gates usin : .
S (") 8 g practical sizes

2n + O(log n) qubits
Low crossover—in some cases, already faster

Exact QFT in O(n"*) gates using 1 ancill it |
xact OFT in O(n"") gates using 1 ancilla for 20 bit inputs!
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Open Questions

- Can multiplication modN be performed with O(1) ancillas?
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Open Questions

- Can multiplication modN be performed with O(1) ancillas?
- Can QFT be done in sub-linear depth without needing a lot of ancillas?
- Can we do any of these things with zero ancillas?

- Can this technique be applied to e.g. the O(nlog nloglogn) Schonhage-Strassen
algorithm?

- How well can we optimize explicit circuits (especially the base case)?

Thank you!
Greg Kahanamoku-Meyer — gkm@berkeley.edu
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Backup
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What about all the arbitrary rotation gates?

In error-corrected setting, arbitrary rotation gates need to be synthesized.
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CR, optimized

1. Compute [x'Z’) via a regular digital

Direct (schoolbook) multiplier circuit

Apply 322 = 1024 CR,, gates
SRS i 2. Apply phase rotations on the output

3. Uncompute [x'Z’)
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What about all the arbitrary rotation gates?

In error-corrected setting, arbitrary rotation gates need to be synthesized.

Idea: “convert” some rotation gates into e.g. Toffolis; easier to synthesize

All rotations are in the base case: 32-bit (say) PhaseProduct ¢x’z/

CR, optimized
1. Compute [x'Z’) via a regular digital

Direct (schoolbook) multiplier circuit

Apply 322 = 1024 CR,, gates
SRS i 2. Apply phase rotations on the output

3. Uncompute [x'Z’)

1024 CRy — 64 Ry plus ~ 2048 Toffoli
4



Fast classical-quantum multiplication: algorithm

PhaseProduct(g, |X) ,|2))

Input: Quantum state |x) |z), classical value ¢

Output: Quantum state exp(ipxz) |X) |z)

1. Split |x) and |z) in half, as |x1) |Xo) and |z1) |zo)

Apply PhaseProduct((2" — 2"/2)¢, |x1) , |z1))

Apply PhaseProduct((1—2"%)¢, [Xo) , |20))

Add |x1) to |Xo), and |z;) to |zo). Registers now hold |xq) [Xo + X1) |21) |20 + Z1).
Apply PhaseProduct(2"/2¢, |xo + X1 , |20 + 21)).

Subtract |x), |z1) to return to registers to [x1) |Xo) [21) |20).

on L 5 W N
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