Fast quantum integer multiplication
with very few ancillas

Gregory D. Kahanamoku-Meyer, Norman VY. Yao
October 19, 2023

Arithmetic on quantum computers: why do we care?

Motivation

Arithmetic on quantum computers: why do we care?

Cléssically verifiable quantum advantage from
a computational Bell test

Gregory D. Kahanamoku-Meyer ®'4, Soonwon Choi', Umesh V. Vazirani?>¢ and Norman Y. Yao ®*4

ing experimental demonstrations of quantum computational advantage have had the limitation that verifying the correctness
of the quantum device requires exponentially costly classical computations. Here we propose and analyse an interactive protocol
for demonstrating quantum computational advantage, which is efficiently classically verifiable. Our protocol relies on a class of
cryptographic tools called trapdoor claw-free functions. Although this type of function has been applied to quantum advantage
protocols before, our protocol employs a surprising connection to Bell’s inequality to avoid the need for a demanding cryptographic
property calld the adaptiv hardcore bt e maintaining essentially o ncrease nthe quantum clrult compledty and o extra

“tractions, based on Rabin's

Motivation

Arithmetic on quantum computers: why do we care?

Efficiently-verifiable advantage,

Classically verifiable quantum advantage using n — 1024 bit factoring

a computational Bell test

Gregory D. Kahanamoku-Meyer ®'4, Soonwon Choi', Umesh V. Vazirani?>¢ and Norman Y. Yao ®*4

Existing experimental demonstrations of quantum computational advantage have had the limitation that verifying the correctness
of the quantum device requires exponentially costly classical computations. Here we propose and analyse an interactive protocol
for demonstrating quantum computational advantage, which is efficiently classically verifiable. Our protocol relies on a class of
cryptographic tools called trapdoor claw-free functions. Although this type of function has been applied to quantum advantage
protocols before, ou protocol employs a surprising connection to Bell's ineguality to avoid the need for a demanding cryptographic
property called the adaptive hardcore bit, while maintaining essentially no increase in the quantum cireuit complexity and no extra
assumptions. Leveraging the relaxed cryptographic requirements of the protocol, we present two trapdoor claw-free function con-
structions, based on Rabin's function and the Diffie-Hellman problem, which have not been used in this context before. We also

Motivation

Arithmetic on quantum computers: why do we care?

Efficiently-verifiable advantage,

Classically verifiable quantum advantage using n — 1024 bit factoring

a computational Bell test

Gregory D. Kahanamoku-Meyer ®'4, Soonwon Choi', Umesh V. Vazirani?>¢ and Norman Y. Yao ®*4) .
Shor’s algorithm: 10"+ gates

Existing experimental demonstrations of quantum computational advantage have had the limitation that verifying the correctness
of the quantum device requires exponentially costly classical computations. Here we propose and analyse an interactive protocol
for demonstrating quantum computational advantage, wi ficiently classically verifiable. Our protocol relies on a class of
cryptographic tools called trapdoor claw-free functions. Although this type of function has been applied to quantum advantage
protocols before, ou protocol employs a surprising connection to Bell's ineguality to avoid the need for a demanding cryptographic
property called the adaptive hardcore bit, wi ntaining essentially no increase in the quantum circuit complexity and no extra
assumptions. Leveraging the relaxed cryptographic requirements of the protocol, we present two trapdoor claw-free function con-
structions, based on Rabin's function and the Diffie-Hellman problem, which have not been used in this context before. We also

Motivation

Arithmetic on quantum computers: why do we care?

Efficiently-verifiable advantage,

Classically verifiable quantum advantage from using n — 1024 bit factoring

a computational Bell test

Gregory D. Kahanamoku-Meyer ®'4, Soonwon Choi', Umesh V. Vazirani?>¢ and Norman Y. Yao ®*4) .
Shor’s algorithm: 10'°+ gates

Existing experimental demonstrations of quantum computational advantage have had the limitation that verifying the correctness
of the quantum device requires exponentially costly classical computations. Here we propose and analyse an interactive protocol

for demonstrating quantum computational advantage, which is efficiently classically verifiable. Our protocol relies on a class of

cryptographic tools called trapdoor claw-free functions. Although this type of function has been applied to quantum advantage ..)

protocols before, our protocol employs a surprising connection to Bell's inequality to avoid the need for a demanding cryptographic .
property called the adaptive hardcore bit, while maintaining essentially no increase in the quantum circuit complexity and no extra [N Orl g' nal x* mod N proposa l:
assumptions. Leveraging the relaxed eryptographic requirements of the protocol, we present two trapdoor claw-free function con-

structions, h?sed on R:bin:s lunqion and tl’fe Diﬂie—HeIlman‘problem, whjch have not Peen used in this context before. We also 5 ’I 07 ga te SY 7 O O O q U b I ts

Motivation

Arithmetic on quantum computers: why do we care?

Efficiently-verifiable advantage,

Classically verifiable quantum advantage from using n — 1024 bit factoring

a computational Bell test

Gregory D. Kahanamoku-Meyer ®'4, Soonwon Choi', Umesh V. Vazirani?>¢ and Norman Y. Yao ®*4) .
Shor’s algorithm: 10'°+ gates

Existing experimental demonstrations of quantum computational advantage have had the limitation that verifying the correctness
of the quantum device requires exponentially costly classical computations. Here we propose and analyse an interactive protocol

for demonstrating quantum computational advantage, which is efficiently classically verifiable. Our protocol relies on a class of

cryptographic tools called trapdoor claw-free functions. Although this type of function has been applied to quantum advantage ..)

protocols before, our protocol employs a surprising connection to Bell's inequality to avoid the need for a demanding cryptographic .
property called the adaptive hardcore bit, while maintaining essentially no increase in the quantum circuit complexity and no extra [N Orl g' nal x* mod N proposa l:
assumptions. Leveraging the relaxed eryptographic requirements of the protocol, we present two trapdoor claw-free function con-

structions, h?sed on R:bin:s lunqion and tl’fe Diﬂie—HeIlman‘problem, whjch have not Peen used in this context before. We also 5 ’I 07 ga te S, 7 O O O q U b I ts

x2 mod N with this result:
> 106 gates, 2000 qubits

Motivation

Arithmetic on quantum computers: why do we care?

Classica,l wvAavifiakhla Arimnbiiiae aduantasa fuaa

a compu A Cryptographic Test .of Quantumness anq Certifiable
Randomness from a Single Quantum Device

Gregory D. Kahar
) . ZVIKA BRAKERSKI, Weizmann Institute of Science, Israel
ing experimental * pA |j| CHRISTIANO, OpenAl Us
of the quantum device
for demonstrating qu: URMILA MAHADEYV, California Institute of Technology,
cryptographic tools ¢ JMESH VAZIRANI, U

protocols before, our e .
property called the ad: THOMAS VIDICK,

assumptions. Leveragi
structions, basedon f — 708 ——M
. We der a new e testing of untrusted quantum d e polynomial

time bounded quantum device interacting with a classical polynomial time verifier. In this model, we
ropose solutions to two tasks—a protocol for efficient classical verification that the untrusted device is
randomness from a single untrusted quantum

ruly quantum” and a protocol for producing certifiabl

Motivation

Arithmetic on quantum computers: why do we care?

Classica,l.. wvAavifiakhla Arimnbiiiae aduantasa fuaa

a compu

Gregory D. Kahar

Existing experimental
of the quantum device
for demonstrating qu:
cryptographic tools cz
protocols before, our
property called the ad:
assumptions. Leveragi
structions, based on

A Cryptographic Test of Quantumness and Certifiable

Randomness f 3
SIAM J. COMPUT (© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1484-1509, Oc 009

ZVIKA BRAKERSKI,
PAUL CHRISTIANO,

Sf‘”E"SLHA\’,”A‘*Z\I*}'Q:‘\[;fVI POLYNOMIAL-TIME ALGORITHMS FOR PRIME FACTORIZATION

THomas viDicK . AND DISCRETE LOGARITHMS ON A QUANTUM COMPUTER*

We der a mode
time bounded quantum Abstract. A digital computer is generally believe an efficient universal computing device;
bel d able to ate any physical computing device with an ir
time by at most a polynomial factor
on. This pap >
erally thought to be hard on a cla

“truly quantum” and a p

Motivation

Arithmetic on quantum computers: why do we care?

Classica,l.. wvAavifiakhla Arimnbiiiae aduantasa fuaa

a compu

Gregory D. Kahar

Existing experimental
of the quantum device
for demonstrating
cryptographic tools
protocols before, our
property called the ad:
assumptions. Leveragi
structions, based on

A Cryptographic Test of Quantumness and Certifiable
Randomness f)
T © 1997 S y for Industrial and Applied Mathematics
pp. 1484-1509, ber 1997 009
ZVIKA BRAKERSKI,
PAUL CHRISTIANO, An Efﬁment Quantum Factoring Algorithm

umesh vazimant, POLYNOM
4)
THOMAS VIDIC AND DI¢ R

We er a new mode
time bounded (|u antum Abstract
s o twe
bstract

We show that n-bit integers can be fdti(nl/e‘(l by independently running a quantum circuit
with O(n*/2) gates for \/n + 4 times, and then u polynomial-time d pro:

The correctness of the algorithm relies on a number-theoretic heuristic assumption remin

Multiplication on quantum computers

Today's goal: implement the following unitaries

Multiplication on quantum computers

Today's goal: implement the following unitaries

Ugxq [X) [¥)10) = X} 1y) [xy)

Multiplication on quantum computers

Today's goal: implement the following unitaries

Ugxq [X) [¥)10) = X} 1y) [xy)

Uexq(a) [X) |0) = [x) |ax)

Multiplication on quantum computers

Today's goal: implement the following unitaries

Ugxq [X) [¥)10) = X} 1y) [xy)

Uexq(a) [X) |0) = [x) |ax)

.. with as few gates and qubits as possible.

Multiplication on quantum computers

Today's goal: implement the following unitaries

Ugxq X) [Y) W) = X} y) [w + xy)

Ucxq(a) [X) [W) = [X) |w + ax)

.. with as few gates and qubits as possible.

Background: schoolbook multiplication

The “schoolbook” method: xy = 3=,:(2'x))(2ly;) = 32,2 Vxiy;

1 1 1
x 1 0
1 0 1 O
1 0 1 0
+ 1 0 1 0
1 0 O 0 0 1 0

Background: schoolbook multiplication

The “schoolbook” method: xy = 3=,:(2'x))(2ly;) = 32,2 Vxiy;

1 1 0 1
x 1 0 1 0
1 0 1 O
1 0 1 0
+ 1 0 1 0
1 0 O 0 0 1 0

Running time: O(n?) operations

Background: schoolbook multiplication

Given two n-bit numbers x and y, what if we use base b = 2"/2?

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4

Background: schoolbook multiplication

Given two n-bit numbers x and y, what if we use base b = 2"/2?

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4

Xy = X1y1b? + Xoy1b + x1y0b + XoYo

Background: schoolbook multiplication

Given two n-bit numbers x and y, what if we use base b = 2"/2?

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4

Xy = X1y1b? + Xoy1b + x1y0b + XoYo

Time remains O(n?), because 4(n/2)? = n?

Background: Karatsuba multiplication

Xy = X1y1b? + (Xoy1 + X1Yo)b + XoVo

Background: Karatsuba multiplication

Xy = X1y1b? + (Xoy1 + X1Yo)b + XoVo

Observation: Xoy: + X1¥o = (X1 4 Xo) (1 + Yo) — X1y1 — XoYo

Background: Karatsuba multiplication

Xy = X1y1b? + (Xoy1 + X1Yo)b + XoVo

Observation: Xoy: + X1¥o = (X1 4 Xo) (1 + Yo) — X1y1 — XoYo

Can compute xy with only multiplications of size logb = n/2:

1. X1Y1
2. XoYo
3. (X1 4+ Xo0) (V1 + Yo)

Background: Karatsuba multiplication

Xy = X1y1b? + (Xoy1 + X1Yo)b + XoVo

Observation: Xoy: + X1¥o = (X1 4 Xo) (1 + Yo) — X1y1 — XoYo

Can compute xy with only multiplications of size logb = n/2:

1. X1Y1
2. XoYo
3. (X1 +Xo) (V1 + Vo)

Computational cost: 3(n/2)? = 2n? = O(n?)

Background: Karatsuba multiplication

/
e

\

Background: Karatsuba multiplication

—
|
BT

x|

Background: Karatsuba multiplication

N\

1

/

Background: Karatsuba multiplication

N\

1

/

Depth: d = log, n

Background: Karatsuba multiplication

N\

1

/

Depth: d = log, n

Operations: 3¢

Background: Karatsuba multiplication

7N

NG ZINC /NG ZING AN /N ZINC AN /N

Depth: d = log, n

Operations: 3¢

H
= E9 o S

/1\

Cost: O(n'°&23) = O(n'8)
/

Background: Karatsuba multiplication

Question: why don’'t we always do this, classically?

Answer: the extra complexity isn’t always worth it!

Background: Karatsuba multiplication

Question: why don’'t we always do this, classically?

Answer: the extra complexity isn’t always worth it!

.. but for large enough values, it is

Background: Karatsuba multiplication

Question: why don’'t we always do this, classically?

Answer: the extra complexity isn’t always worth it!

.. but for large enough values, it is

GNU multiple-precision arithmetic library cutoff: 2176 bit numbers

Can these fast circuits be made quantum?

Can these fast circuits be made quantum?

Challenge: making recursive algorithms reversible

[

L. Py
Xo =
_—

-5
o \45
[N

- =

. N

=
[« g
-y

_— =

I =
_—

[AN

L

T

[o [y
-

£ =
——
oA \45
L AN

Can these fast circuits be made quantum?

Challenge: making recursive algorithms reversible

——] Work Qubits
- 4=;§ Kowada et al. ‘06 | O(n58+ |
\45 owada e a.y (n)
—— Parentetal. '18 | O(n"*)
[Py Gidney '19)
[DNy
[AN
-_gg
= D =
o = £
L AN

Can these fast circuits be made quantum?

Challenge: making recursive algorithms reversible

—— —< Work Qubits
- 4=; Kowada et al. ‘06 ‘ O(n158 |
T owada e a.y (n)
— Parentetal. '18 | O(n"*)
T Gidney '19 O(n)
L Ay

Gidney "19 requires over 12,000 ancilla
qubits for 2048-bit multiplication.

Can these fast circuits be made quantum?

Challenge: making recursive algorithms reversible

—— —= Work Qubits
- 4=;§ Kowada et al. ‘06 | O’ |
T T S owada e a.y (n)
—— Parentetal. '18 | O(n"#)
il Gidney '19 O(n)
Ty) , : .
- \ = Gidney 19 requires over 12,000 ancilla
. ==< qubits for 2048-bit multiplication.
— Z’ 4= |Isit possible to do better?
N=
L AN

Can these fast circuits be made quantum?

Challenge: making recursive algorithms reversible

—— —f&= Work Qubits
- 4=;§ Kowada et al. ‘06 | O(n'58" |
\45 owada € a.y (ﬂ)
—— Parentetal. '18 | O(n"*)
i Gidney '19 O(n)
\ = Gidney 19 requires over 12,000 ancilla
. ==< qubits for 2048-bit multiplication.
Z» &€ Isit possible to do better?
\% Result: Fast multiplication using 1 ancilla

A fundamentally quantum way of doing arithmetic

[Draper '04]: Arithmetic in Fourier space

IXy) = QFT~ 1Zex (ZW’XVZ) 12)

A fundamentally quantum way of doing arithmetic

[Draper '04]: Arithmetic in Fourier space

S 126){ (ZW’XVZ) 12)

How to implement |x) |y) [0) — |x) |y) |xy)?

A fundamentally quantum way of doing arithmetic

[Draper '04]: Arithmetic in Fourier space

S 126){ (ZW’XVZ) 12)

How to implement |x) |y) [0) — |x) |y) |xy)?
1) Generate |x) |y) >, |2)

A fundamentally quantum way of doing arithmetic

[Draper '04]: Arithmetic in Fourier space

S 126){ (ZW’XVZ) 12)

How to implement |x) |y) [0) — |x) |y) |xy)?
1) Generate |x) |y) >, |2), 2) apply a phase rotation of

A fundamentally quantum way of doing arithmetic

[Draper '04]: Arithmetic in Fourier space

S 126){ (ZW’XVZ) 12)

How to implement |x) |y) [0) — |x) |y) |xy)?
1) Generate |x) |y) >, |2), 2) apply a phase rotation of , 3) apply QFT™"

A fundamentally quantum way of doing arithmetic

How do we apply exp (2“2'#)7

1

A fundamentally quantum way of doing arithmetic

How do we apply exp (2“2'fyz)?

Xy =32 2xiy;

1

A fundamentally quantum way of doing arithmetic

How do we apply exp (2“2'#)7

Xyz =321 ¢ 222"z,

2mixyz 2mi2i itk
exp < on) = Hexp (ZI’JX‘.ijh

ijR

1

A fundamentally quantum way of doing arithmetic

How do we apply exp (2“2'#)7

Xyz =321 ¢ 222"z,

2mixyz 2mi2i itk
exp < on) = Hexp (ZI’JX‘.ijh
i,k

Xi,Yj,Zk are binary values—apply phase only if they all are equal to 1!

1

A fundamentally quantum way of doing arithmetic

How do we apply exp (2“2'fyz)?

XYZ =3k 2122kxy;zp

2mixyz 2mi2ititk
exp < on) = HCXp (an‘ylzh
I,j,k

Xi,Yj,Zk are binary values—apply phase only if they all are equal to 1!

A series of CCR,, gates between the bits of |x), |y), and |z)!

1

A fundamentally quantum way of doing arithmetic

2mixyz 2mi2 Ik
exp (2ny) = Hexp (ZHX,')/jZk>

ijR

The downside:

A fundamentally quantum way of doing arithmetic

2mixyz 2mi2ititk
exp (2ny) = Hexp (aniyj’Zk>

ijR

The downside: For n-bit numbers, this requires n* gates!

A fundamentally quantum way of doing arithmetic

2mixyz 2mi2ititk
exp (2ny) = Hexp (aniyj’Zk>

ijR

The downside: For n-bit numbers, this requires n* gates!

A modest improvement: classical-quantum multiplication ¢(a) |x) |0) = |x) |ax)

A fundamentally quantum way of doing arithmetic

2mixyz itk
exp (on) = Hexp (ZHX,'ijk

ijR

The downside: For n-bit numbers, this requires n* gates!

A modest improvement: classical-quantum multiplication ¢(a) |x) |0) = |x) |ax)

2miaxz 2mia2i™
exp 2” = HCXp TX,ZJ

i

Here: O(n?) controlled phase rotations (matches Schoolbook algorithm)

Fast quantum multiplication

Main question: Can we combine fast multiplication with
Fourier arithmetic to get the benefits of both?

Fast classical-quantum multiplication

Goal: U(a) |x) |0) = |x) |ax)

14

Fast classical-quantum multiplication

Goal: Apply phase exp (Z%xz); x and z are quantum
2

14

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |2) = exp (i¢x2) |x) |2)

14

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |2) = exp (i¢x2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

14

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |2) = exp (i¢x2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Previously:

exp (ipxz) = Hexp (/¢2’+fxz)

I

14

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |X) |2) = exp (i¢x2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Karatsuba:
Xz = 2"x121 4+ 2" ((Xo + X1) (20 + 21) — XoZo — X1Z1) + XoZo

14

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)
We want to split the phase ¢xz into the sum of many phases, which are easy to implement.
Plugging in Karatsuba:

exp (igpxz) = exp (Ip2"x121)
- exp (i¢XoZo)

- exp (i¢>2”/2((xo + x1)(2o + 21) — XoZo — qu1))

14

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)
We want to split the phase ¢xz into the sum of many phases, which are easy to implement.
Plugging in Karatsuba:

exp (igpxz) = exp (Ip2"x121)
- exp (i¢XoZo)

- exp (i¢>2”/2((xo + x1)(2o + 21) — XoZo — qu1))

How are we supposed to reuse values in the phase?

14

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Karatsuba:
Xz = 2"x121 + 2" ((Xo + X1) (20 + Z1) — XoZo — X121) + XoZo

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Re-ordering Karatsuba:

XZ = (2” — 2n/2)X121 aF Zn/z(XQ aF X])(Zo aF 21) aF (1 = 2n/2)X020

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢xz) |X) |z)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Plugging in reordered Karatsuba:
exp (igxz) = exp (i</>(2” _ 2”/2)qu1)
- exp <i¢(1 — 2”/2)XOZO>

- exp (i(bZ”/z(Xo +x1)(Zo +Z1))

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢xz) |X) |z)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.
Plugging in reordered Karatsuba:

exp (igxz) =exp (igxiz7) 1= (2" —2")¢
- exp (IpaXoZo) ¢ =(1-2"2)¢
-exp (Ig3(Xo + X1)(20 + 21)) ¢z =2"2¢

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢xz) |X) |z)

We want to split the phase ¢xz into the sum of many phases, which are easy to implement.

Plugging in reordered Karatsuba:

exp (igxz) =exp (igxiz7) 1= (2" —2")¢
- exXp (i¢2XoZ0) ¢2 = (1 - 2ﬂ/2)¢
-exp (Ip3(Xo + X1)(Z0 + 1)) ¢z =2"2¢

Each of these has the same structure, but on half as many qubits — do it recursively!

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

exp (igxz) =exp (igxaz7) P = (2" —2"%)¢
- exp (I¢2X0Zo) ¢ =(1-2"7)¢
- exp (i¢3(X0 +X1)(ZO +Z1)) 3 = 2”/2¢

Recursion relation: T(n) =3T(n/2)

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

exp (igxz) =exp (igxaz7) P = (2" —2"%)¢
- exp (I¢2X0Zo) ¢ =(1-2"7)¢
- exp (i¢3(X0 +X1)(ZO +Z1)) 3 = 2”/2¢

Recursion relation: T(n) = 3T(n/2) = O(n'°&:3) = O(n'*%) gates!

How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z7) |z0), can immediately do

- exp (ip1X121)

* exp (IXo2o)

How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z7) |z0), can immediately do

- exp (ip1X121)

* exp (IXo2o)

What about exp (igs(Xo + X1)(Z0 + 21))?

How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z7) |z0), can immediately do

- exp (ip1X121)

* exp (IXo2o)

What about exp (igs(Xo + X1)(Z0 + 21))?

Use quantum addition circuits.

How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z7) |z0), can immediately do

- exp (ip1X121)

* exp (IXo2o)

What about exp (igs(Xo + X1)(Z0 + 21))?

Use quantum addition circuits.

But, addition is reversible — do it in-place! E.g. |x1) [Xo) — |X1) [Xo + X1)

How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z7) |z0), can immediately do

© exp (i¢1X‘|Z1)

* exp (IXo2o)

What about exp (igs(Xo + X1)(Z0 + 21))?

Use quantum addition circuits.

But, addition is reversible — do it in-place! E.g. |x1) [Xo) — |X1) [Xo + X1)

Total number of ancillas:

How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z7) |z0), can immediately do

© exp (i¢1X‘|Z1)

* exp (IXo2o)

What about exp (igs(Xo + X1)(Z0 + 21))?

Use quantum addition circuits.

But, addition is reversible — do it in-place! E.g. |x1) [Xo) — |X1) [Xo + X1)

Total number of ancillas:

How many qubits do we need?

Total number of ancillas: @(logn)

How many qubits do we need?

Total number of ancillas: @(log n)

1 bit n/2 bits

How many qubits do we need?

Total number of ancillas: 2

1 bit n/2 bits

Idea: “Shave off” the high bit before recursing

How many qubits do we need?

Total number of ancillas: 1

1 bit n/2 bits

II
- o

Idea: “Shave off” the high bit before recursing

How many qubits do we need?

Total number of ancillas: 1

1 bit n/2 bits

IH
-t o

Idea: “Shave off” the high bit before recursing

How many qubits do we need?

Total number of ancillas: 1

| bit n/2 bits

Idea: “Shave off” the high bit before recursing

How many qubits do we need?

Total number of ancillas: 1
1 bit n/2 bits

Idea: “Shave off” the high bit before recursing

Making it go faster

So far: O(n"38) gates using 1 ancilla

19

Making it go faster

So far: O(n"38) gates using 1 ancilla

Can we make it go faster?

19

Background: Toom-Cook multiplication

Let b = 2/2,

X = X1b + Xo

Z=2z21b+ 2

n/2 bits n/2 bits

20

Background: Toom-Cook multiplication

Let b = 27/,

k=1
X = Zx,b’
]
k—1 ;
7= zt/
i=0
n/k bits n/k bits n/k bits n/k bits

20

Background: Toom-Cook multiplication

Let b = 27/,

n/k bits n/k bits n/k bits n/k bits

Schoolbook: k* multiplications of size n/k
20

Background: Toom-Cook multiplication

21

Background: Toom-Cook multiplication

21

Background: Toom-Cook multiplication

21

Background: Toom-Cook multiplication

R—

X(b) = 3" xib p(b) = x(b)2(b)
e

=2 e p2"/") = x2"/Myz(2")

Facts:

- For any point w, p(w) = x(w)z(w)

21

Background: Toom-Cook multiplication

R—

X(b) = 3" xib p(b) = x(b)2(b)
e

=2 e p2"/") = x2"/Myz(2")

Facts:

- For any point w, p(w) = x(w)z(w)

- p(b) has degree 2(k — 1) = uniquely determined by g = 2(R — 1) + 1 points wy!

21

Background: Toom-Cook multiplication

n/k bits n/k bits n/k bits n/k bits

1. Compute x(wy), z(w,) at —

o Z z Z --- Z,
q points w, 2
n/kbits n/kbits n/k bits n/k bits n/k bits n/k bits

S R N ||

Only 2k — 1 multiplications of size n/k!

22

Background: Toom-Cook multiplication

n/k bits n/k bits n/k bits n/k bits
1. Compute x(wy), z(w) at —
g points w; - -

2. Pointwise multiply

n/kbits n/kbits n/k bits n/k bits n/k bits n/k bits

S R N ||

Only 2k — 1 multiplications of size n/k!

22

Background: Toom-Cook multiplication

n/k bits n/k bits n/k bits n/k bits

1. Compute x(wy), z(w,) at —

qpomtg Wp i1
2. Pointwise multiply
3. Interpolate p(b) n/kbits n/kbits n/kbits n/k bits n/kbits n/k bits

S R N ||

Only 2k — 1 multiplications of size n/k!

22

Background: Toom-Cook multiplication

n/k bits n/k bits n/k bits n/k bits

1. Compute x(wg), Z(wg) at |
q points we --- I

2. Pointwise multiply

3. Interpolate p(b) n/kbits n/kbits n/kbits n/k bits n/kbits n/k bits
4. Evaluate p(27/%)

S R N ||

Only 2k — 1 multiplications of size n/R!

22

Karatsuba in the language of Toom-Cook

Karatsuba is Toom-Cook with k = 2

23

Karatsuba in the language of Toom-Cook

Karatsuba is Toom-Cook with k = 2

X(b) = x1b + xo
z(b) = z1b + 2o

23

Karatsuba in the language of Toom-Cook

Karatsuba is Toom-Cook with k = 2

X(b) = x1b + xo
z(b) = z1b + 2o

p(b) = x(b)z(b) has degree 2

23

Karatsuba in the language of Toom-Cook

Karatsuba is Toom-Cook with k = 2

Letw € {0, 00,1}
x(b) = x1b + Xo
z(b) =z:b + z¢

p(b) = x(b)z(b) has degree 2

p(b) = p(c0)b® + [p(1) — p(o0) — p(0)] b+ p(0)

23

Karatsuba in the language of Toom-Cook

Karatsuba is Toom-Cook with k = 2

Letw € {0, 00,1}
x(b) = x1b + Xo
z(b) =z:b + z¢

p(b) = x(b)z(b) has degree 2

23

Karatsuba in the language of Toom-Cook

Karatsuba is Toom-Cook with k = 2

Letw € {0, 00,1}

x(b) = x1b + Xo
2(b) = 21b + 2, X(0) =%
X(00) = Xq
p(b) = x(b)z(b) has degree 2 X(1) = Xo + Xq

23

Karatsuba in the language of Toom-Cook

Karatsuba is Toom-Cook with k = 2

Letw € {0, 00,1}

x(b) = x1b + Xo
2(b) = 21b + 2, X(0) =%
X(00) = Xq
p(b) = x(b)z(b) has degree 2 X(1) = Xo + Xq

p(b) = X1qu2 aF [(Xo =F Xq)(Zo aF Zq) — X1Z1 — XQZo] b + X0z

23

Karatsuba in the language of Toom-Cook

Karatsuba is Toom-Cook with k = 2

Let w € {0, 00,1}

x(b) = x1b + xo
z(b) = z:b + 2o X(0) =%
X(00) = X1
p(b) = x(b)z(b) has degree 2 x(1) = X0 + X

P(2"/2) = x1212" + [(Xo + X1)(20 + Z1) — X121 — XoZ0] 2"/ + XoZo

23

Karatsuba in the language of Toom-Cook

Karatsuba is Toom-Cook with k = 2

Let w € {0, 00,1}

x(b) = x1b + xo
z(b) = z:b + 2o X(0) =%
X(00) = X1
p(b) = x(b)z(b) has degree 2 x(1) = X0 + X

XZ = x12:2" + [(Xo + X1)(Z0 + 21) — X121 — X0Z0] 2"/? + X020

23

Complexity vs. k

Toom-Cook has asymptotic complexity O(n'09x(2k=1))

24

Algorithm | Gate count

Schoolbook O(n?)
k=2 O(n'8)
k=3 O(n"46-)
k=4 O(rﬂ 40y

Complexity vs. k

Toom-Cook has asymptotic complexity O(n'09x(2k=1))

24

Algorithm | Gate count

Schoolbook O(n?)
k=2 O(n'8)
k=3 O(n"46-)
k=4 O(rﬂ 40y

These are the gate counts for our classical-quantum multiplication!

Complexity vs. k

Toom-Cook has asymptotic complexity O(n'09x(2k=1))

24

Overhead moves to classical precomputation

n/k bits n/kbits n/k bits n/k bits n/k bits n/k bits
1. Compute x(w), z(wy) at

S S N ||

g points wy
2. Pointwise multiply
3. Interpolate p(b)
4. Evaluate p(2"/F) s

oxz = Z Bex(Wp)z(wy) (1)

£=0

25

Overhead moves to classical precomputation

n/k bits n/kbits n/k bits n/k bits n/k bits n/k bits
1. Compute x(w), z(wy) at

S S N ||

g points wy

2. Pointwise multiply

3. Inter
4. Eva) -
oxz = Z Bex(Wp)z(wy) (1)
=0

25

Overhead moves to classical precomputation

n/k bits n/kbits n/k bits n/k bits n/k bits n/k bits
1. Compute x(w), z(wy) at

S S N ||

g points wy

2. Pointwise multiply

3. Inter
4. Eva) -
oxz = Z Bex(Wp)z(wy) (1)
=0

Much of the overhead has moved to classical precomputation!

25

Fast quantum-quantum multiplication

Goal: U [x) |y) [0) = |x) |y} [xy)

26

Fast quantum-quantum multiplication

Goal: Apply phase exp (%Txyz); X, Y, and z are quantum

26

Fast quantum-quantum multiplication

Goal: Implement PhaseTripleProduct(e) [x) |y) [2) = exp (i¢xyz) |X) |y) |2)

26

Fast quantum-quantum multiplication

Goal: Implement PhaseTripleProduct(¢) |x) ly) |2) = exp (igxyz) |X) |v) |2)

Previously:

exp (ipxyz) = Hexp (i¢2’+f+’?xiyjzk) (n® doubly-controlled phase rotations)
ik

26

Fast quantum-quantum multiplication

Goal: Implement PhaseTripleProduct(¢) |x) |v) |2) = exp (ipxyz) |X) |y) |2)

Previously:
exp (ipxyz) = Hexp (i¢2’+f+’?xiyjzk) (n® doubly-controlled phase rotations)
ik

Question: How would you classically compute a triple product like xyz?

26

Fast quantum-quantum multiplication

Goal: Implement PhaseTripleProduct(e) [x) |y) [2) = exp (i¢xyz) |X) |y) |2)

Previously:

exp (ipxyz) = Hexp (i¢2’+f+’?xiyjzk) (n® doubly-controlled phase rotations)
ijk
Question: How would you classically compute a triple product like xyz?

Answer: Use parentheses! xyz = x(yz).

26

Fast quantum-quantum multiplication

Goal: Implement PhaseTripleProduct(¢) |x) |v) |2) = exp (ipxyz) |X) |y) |2)

Previously:

exp (ipxyz) = Hexp (i¢2’+f+’?xiyjzk) (n® doubly-controlled phase rotations)
ijk
Question: How would you classically compute a triple product like xyz?

Answer: Use parentheses! xyz = x(yz). Then asymptotic cost is the same

26

Fast quantum-quantum multiplication

Goal: Implement PhaseTripleProduct(¢) |x) |v) |2) = exp (ipxyz) |X) |y) |2)

Previously:
exp (ipxyz) = Hexp (i¢2’+f+’?xiyjzk) (n® doubly-controlled phase rotations)
ijk
Question: How would you classically compute a triple product like xyz?

Answer: Use parentheses! xyz = x(yz). Then asymptotic cost is the same

Doesn't work in the phase!!

26

Generalizing Toom-Cook

Goal: Compute xyz “all at once”

27

Generalizing Toom-Cook

Goal: Compute xyz “all at once”

p(b) has degree g = 2k — 1

27

Generalizing Toom-Cook

Goal: Compute xyz “all at once”

p(b) has degree g = 2k — 1 p(b) has degree g =3k —2

27

Example: Generalizing Karatsuba’s method

For k = 2, we have g = 4. Using w; € {0, 00,1, —1}:

28

Example: Generalizing Karatsuba’'s method

For k = 2, we have g = 4. Using w; € {0, 00,1, —1}:

Xyz :<23n/2 - 2H/Z)X1Y1Z1

+ (2" 4+ 2% (x0 + x1) (Vo + 1) (20 + 21)

(2" = 2"%)(xo — x1) (Yo — Y1) (20 — 21)

1—2")xoY020

N[=N =

+
+

—

28

Example: Generalizing Karatsuba’s method

For k = 2, we have g = 4. Using w; € {0, 00,1, —1}:

Xyz :<23n/2 - 2H/Z)X1Y1Z1

+ (2" 4+ 2% (x0 + x1) (Vo + 1) (20 + 21)

(2" = 2"%)(xo — x1) (Yo — Y1) (20 — 21)

1—2")xoY020

N[=N =

+
+

—

Only 4 multiplications of length n/2 instead of 8!

28

Example: Generalizing Karatsuba’s method

Only 4 multiplications of length n/2, instead of 8!

Recursion relation: T(n) ~ 4T(n/2)

29

Example: Generalizing Karatsuba’s method

Only 4 multiplications of length n/2, instead of 8!

Recursion relation: T(n) ~ 4T(n/2) thus: T(n) = O(n?)

29

Example: Generalizing Karatsuba’s method

Only 4 multiplications of length n/2, instead of 8!

Recursion relation: T(n) ~ 4T(n/2) thus: T(n) = O(n?)

As before: k > 2 is faster.

29

Example: Generalizing Karatsuba’s method

Only 4 multiplications of length n/2, instead of 8!

Recursion relation: T(n) ~ 4T(n/2) thus: T(n) = O(n?)

As before: k > 2 is faster.

| k | Gates O(no&:Cr-2) |

1 O(n?)
p) O(n?)
3 O(n1.77--)
4 O(n1.66~)
5 O(n1.59~-)
6 O(HW.ES-»)
: 29

Summary so far

- Circuits for phase rotations ¢xz or ¢xyz in sub-quadratic time, using 1 or 2 ancillas
respectively

30

Summary so far

- Circuits for phase rotations ¢xz or ¢xyz in sub-quadratic time, using 1 or 2 ancillas
respectively

- Sandwiched by QFTs, this implements multiplication

30

Summary so far

- Circuits for phase rotations ¢xz or ¢xyz in sub-quadratic time, using 1 or 2 ancillas
respectively

- Sandwiched by QFTs, this implements multiplication

Next up:

30

Summary so far

- Circuits for phase rotations ¢xz or ¢xyz in sub-quadratic time, using 1 or 2 ancillas
respectively

- Sandwiched by QFTs, this implements multiplication
Next up:

- Sub-quadratic-time exact QFT with 1 ancilla

30

Summary so far

- Circuits for phase rotations ¢xz or ¢xyz in sub-quadratic time, using 1 or 2 ancillas
respectively

- Sandwiched by QFTs, this implements multiplication
Next up:

- Sub-quadratic-time exact QFT with 1 ancilla
- Depth

30

Summary so far

- Circuits for phase rotations ¢xz or ¢xyz in sub-quadratic time, using 1 or 2 ancillas
respectively

- Sandwiched by QFTs, this implements multiplication
Next up:

- Sub-quadratic-time exact QFT with 1 ancilla
- Depth
- Modular multiplication

30

Summary so far

- Circuits for phase rotations ¢xz or ¢xyz in sub-quadratic time, using 1 or 2 ancillas
respectively
- Sandwiched by QFTs, this implements multiplication

Next up:
- Sub-quadratic-time exact QFT with 1 ancilla
- Depth
- Modular multiplication
- Applications

30

Summary so far

- Circuits for phase rotations ¢xz or ¢xyz in sub-quadratic time, using 1 or 2 ancillas
respectively
- Sandwiched by QFTs, this implements multiplication

Next up:

- Sub-quadratic-time exact QFT with 1 ancilla
- Depth
- Modular multiplication
- Applications
- Shor's algorithm

30

Summary so far

- Circuits for phase rotations ¢xz or ¢xyz in sub-quadratic time, using 1 or 2 ancillas
respectively
- Sandwiched by QFTs, this implements multiplication

Next up:

- Sub-quadratic-time exact QFT with 1 ancilla
- Depth

- Modular multiplication

- Applications

- Shor's algorithm
- Efficiently-verifiable quantum advantage

30

Fast exact quantum Fourier transform

[Cleve and Watrous 2000]: QFT can be defined recursively.

31

Fast exact quantum Fourier transform

[Cleve and Watrous 2000]: QFT can be defined recursively.

For any m < n, we may implement QFTn:
1. Apply QFT,m on first m qubits

2. Apply phase rotation 2mwxz/2"

- |x) is value of first m qubits
- |z) is value of final n — m qubits

3. Apply QFTy-» on final n — m qubits

31

Fast exact quantum Fourier transform

[Cleve and Watrous 2000]: QFT can be defined recursively.

For any m < n, we may implement QFTn:
1. Apply QFT,m on first m qubits

2. Apply phase rotation 2mwxz/2"

- |x) is value of first m qubits
- |z) is value of final n — m qubits

]
.|
u
b4
Sm
Em
gl
u
@
sa
m
am
u

3. Apply QFTy-» on final n — m qubits

31

Fast exact quantum Fourier transform

[Cleve and Watrous 2000]: QFT can be defined recursively.

For any m < n, we may implement QFTn:
1. Apply QFT,m on first m qubits

2. Apply phase rotation 2mwxz/2"

- |x) is value of first m qubits
- |z) is value of final n — m qubits

3. Apply QFTy-» on final n — m qubits

=
o]
3
o
o
2
a
]
)
©
<
a

31

Fast exact quantum Fourier transform

[Cleve and Watrous 2000]: QFT can be defined recursively.

For any m < n, we may implement QFTn:
1. Apply QFT,m on first m qubits

2. Apply phase rotation 2mwxz/2"

- |x) is value of first m qubits
- |z) is value of final n — m qubits

3. Apply QFTy-» on final n — m qubits

=
o]
3
o
o
2
a
]
)
©
<
a

Immediately gives us sub-quadratic exact QFT using only 1 ancilla.

31

Depth considerations

xxxxx

N

/|

Parallelization is natural.

H

/l\

/
oy A

ot
Yoty

NG ZINC N N AN SN SN SN N

32

Depth considerations

V=

=

ey

N=

e Ny
Parallelization is natural. =
_—

N=

. [X] =

We have k sub-registers to work 1 Z» ‘(=
- :] =
with—can do k sub-products in Y \ ‘=
parallel. ey
Py

T mmmm =

\\ =

=

32

Depth considerations

Parallelization is natural.

/|

NG ZINC N N AN SN SN SN N

with—can do k sub-products in

x|

x|

ST

.

We have k sub-registers to work —_— : /
[o]

parallel. ——
T

[__otx]

Depth: PhaseProduct in O(n'°&2) and PhaseTripleProduct in O(n'8:3)

using a few more ancillas
32

Depth considerations

Parallelization is natural.

with—can do k sub-products in
parallel.

/|

NG ZINC N N AN SN SN SN N

x|

x|

ST

.

4 [x| —

We have k sub-registers to work —_— : /
[o]

[]

T

[__otx]

Challenge for multiply: How to do the QFT in sublinear depth

with even O(n) ancillas?
32

Modular arithmetic

So far: have been using phase

33

Modular arithmetic

So far: have been using phase

(denominator matches order of QFT)

33

Modular arithmetic

So far: have been using phase

(denominator matches order of QFT)

Observation:

XyZ\ _ .(xy mod N)z
exp (27rl N) = exp (27TIN

33

Modular arithmetic

Goal: only use n bits for output modulo N

Observation:

XyZ\ .(xy mod N)z
exp (27‘&'/ N) = exp (Zﬂ'IN

Define
Xy mod N
W= —"———

N

34

Modular arithmetic

Goal: only use n bits for output modulo N

Observation:

XyZ\ .(xy mod N)z
exp (27‘&'/ N) = exp (Zﬂ'IN

Define
Xy mod N
W= —"———

N

Now, multiplication:
X} 10) = [x) [w)

34

Modular arithmetic

Goal: only use n bits for output modulo N

Observation:

XyZ\ .(xy mod N)z
exp (27‘&'/ N) = exp (Zﬂ'IN

Define
Xy mod N
W= —"———

N

Now, multiplication:
X} 10) = [x) [w)

Output register requires n + O(log(1/¢)) qubits

34

Application: Shor’s algorithm

For Shor's algorithm: O(n) modular classical-quantum multiplications

35

Application: Shor’s algorithm

For Shor's algorithm: O(n) modular classical-quantum multiplications

Using phase modulo and k = 4 multiplier:

Gates: O(n**)
Total qubits: 2n + O(log(n/e))

(Here € is error across the whole algorithm)

35

Application: Shor’s algorithm

Cost estimates for one 2048-bit classical-quantum multiplication: (here not modular)

Algorithm Gate count (millions) Ancilla qubits

Complexity ool CR¢ Other

Thiswork | O | 06 09 | 2.1 | 50
Karatsuba [1] O(n'8) 5.6 — 34 12730
Windowed [1] O(n?) 1.8 — 2.5 4106
Schoolbook [1] 0(n?) 6.4 — 38 2048*

(Note: ~ 15% of the CR4 come from approximate QFTs with € = 10~")

[1] C. Gidney, “Windowed quantum arithmetic.” (arXiv:1905.07682)

36

Application: Shor’s algorithm

Cost estimates for one 2048-bit classical-quantum multiplication: (here not modular)

Algorithm Gate count (millions) Ancilla qubits

Complexity ool CR¢ Other

Thiswork | O | 06 09 | 2.1 | 50
Karatsuba [1] O(n'8) 5.6 — 34 12730
Windowed [1] O(n?) 1.8 — 2.5 4106
Schoolbook [1] 0(n?) 6.4 — 38 2048*

(Note: ~ 15% of the CR4 come from approximate QFTs with € = 10~")

Open g.: Can we use windowing with our construction?

[1] C. Gidney, “Windowed quantum arithmetic.” (arXiv:1905.07682)

36

Application: efficiently-verifiable quantum advantage

Protocol for a “proof of quantumness” requires evaluating f(x) = x> mod N

37

Application: efficiently-verifiable quantum advantage

Protocol for a “proof of quantumness” requires evaluating f(x) = x> mod N

Cost estimates for protocol with 1024-bit N:

Algorithm Total qubits

‘ Gate count (millions)

Toffoli C*R; Other

Gate optimized 0.7 0.9 0.7 2400
Balanced 0.9 1.0 0.9 2070

Qubit optimized 2.2 2.0 2.2 1560
“Digital” Karatsuba [2] 1.6 — 1.6 6801
“Digital” Schoolbook [2] | 3.5 — 29 4097
Prev. Fourier 1 [2] — 539 — 1025
Prev. Fourier 2 [2] — 35 — 2062

[2] GDKM, Choi, Vazirani, Yao. “Efficiently-verifiable quantum advantage from a computational Bell test” (arXiv:2104.00687)

37

Classical-quantum Quantum-quantum
1 ancilla qubit 2 ancilla qubits
| k| Gates | | k| Gates |
O(n">8) 2 O(n?)
O(I’ﬂ'%m) 3 O(n1.77--~)
O(n1.40---) A (/)(n1.66---)

38

Classical-quantum Quantum-quantum
1 ancilla qubit 2 ancilla qubits
| k| Gates | | k| Gates |
O(n">8) 2 O(n?)
O(nl%u-) 3 O(n1.77--~)
O(n1.40---) A (/)(n1.66---)
Implications:

Shor’s algorithm: O(n**) gates using
2n + O(log n) qubits

38

Classical-quantum Quantum-quantum
1 ancilla qubit 2 ancilla qubits
| k| Gates | | k| Gates |
O(n">8) 2 O(n?)
O(nl%u-) 3 O(n1.77--~)
O(n1.40---) A (/)(n1.66---)
Implications:

Shor’s algorithm: O(n**) gates using
2n + O(log n) qubits

Exact QFT in O(n'*) gates using 1 ancilla

38

Classical-quantum Quantum-quantum
1 ancilla qubit 2 ancilla qubits
| k| Gates | | k| Gates |
O(n">8) 2 O(n?)
O(nl%u-) 3 O(n1.77--~)
O(n1.40---) A (/)(n1.66---)
.. In practice:
Implications:

Low overheads—circuits are useful at

Shor’s algorithm: O@(n?*) gates usin : .
. (") 8 g practical sizes

2n + O(log n) qubits

Exact QFT in O(n'*) gates using 1 ancilla

38

Classical-quantum Quantum-quantum
1 ancilla qubit 2 ancilla qubits
| k| Gates | | k| Gates |
O(n">8) 2 O(n?)
O(nl%u-) 3 O(n1.77--~)
O(n1.40---) A (/)(n1.66---)
.. In practice:
Implications:

Low overheads—circuits are useful at

Shor’s algorithm: O@(n?*) gates usin : .
S (") 8 g practical sizes

2n + O(log n) qubits
Low crossover—in some cases, already faster

Exact QFT in O(n"*) gates using 1 ancill it |
xact OFT in O(n"") gates using 1 ancilla for 20 bit inputs!

38

Open Questions

- Can multiplication modN be performed with O(1) ancillas?

39

Open Questions

- Can multiplication modN be performed with O(1) ancillas?
- Can QFT be done in sub-linear depth without needing a lot of ancillas?

39

Open Questions

- Can multiplication modN be performed with O(1) ancillas?
- Can QFT be done in sub-linear depth without needing a lot of ancillas?
- Can we do any of these things with zero ancillas?

39

Open Questions

- Can multiplication modN be performed with O(1) ancillas?
- Can QFT be done in sub-linear depth without needing a lot of ancillas?
- Can we do any of these things with zero ancillas?

- Can this technique be applied to e.g. the O(nlog nloglogn) Schonhage-Strassen
algorithm?

39

Open Questions

- Can multiplication modN be performed with O(1) ancillas?
- Can QFT be done in sub-linear depth without needing a lot of ancillas?
- Can we do any of these things with zero ancillas?

- Can this technique be applied to e.g. the O(nlog nloglogn) Schonhage-Strassen
algorithm?

- How well can we optimize explicit circuits (especially the base case)?

Thank you!
Greg Kahanamoku-Meyer — gkm@berkeley.edu

39

Backup

40

What about all the arbitrary rotation gates?

In error-corrected setting, arbitrary rotation gates need to be synthesized.

41

What about all the arbitrary rotation gates?

In error-corrected setting, arbitrary rotation gates need to be synthesized.

Idea: “convert” some rotation gates into e.g. Toffolis; easier to synthesize

41

What about all the arbitrary rotation gates?

In error-corrected setting, arbitrary rotation gates need to be synthesized.

Idea: “convert” some rotation gates into e.g. Toffolis; easier to synthesize

All rotations are in the base case: 32-bit (say) PhaseProduct ¢x’z/

41

What about all the arbitrary rotation gates?

In error-corrected setting, arbitrary rotation gates need to be synthesized.

Idea: “convert” some rotation gates into e.g. Toffolis; easier to synthesize

All rotations are in the base case: 32-bit (say) PhaseProduct ¢x’z/

CR, optimized

1. Compute [x'Z’) via a regular digital

Direct (schoolbook) multiplier circuit

Apply 322 = 1024 CR,, gates
SRS i 2. Apply phase rotations on the output

3. Uncompute [x'Z’)

41

What about all the arbitrary rotation gates?

In error-corrected setting, arbitrary rotation gates need to be synthesized.

Idea: “convert” some rotation gates into e.g. Toffolis; easier to synthesize

All rotations are in the base case: 32-bit (say) PhaseProduct ¢x’z/

CR, optimized
1. Compute [x'Z’) via a regular digital

Direct (schoolbook) multiplier circuit

Apply 322 = 1024 CR,, gates
SRS i 2. Apply phase rotations on the output

3. Uncompute [x'Z’)

1024 CRy — 64 Ry plus ~ 2048 Toffoli
4

Fast classical-quantum multiplication: algorithm

PhaseProduct(g, |X) ,|2))

Input: Quantum state |x) |z), classical value ¢

Output: Quantum state exp(ipxz) |X) |z)

1. Split |x) and |z) in half, as |x1) |Xo) and |z1) |zo)

Apply PhaseProduct((2" — 2"/2)¢, |x1) , |z1))

Apply PhaseProduct((1—2"%)¢, [Xo) , |20))

Add |x1) to |Xo), and |z;) to |zo). Registers now hold |xq) [Xo + X1) |21) |20 + Z1).
Apply PhaseProduct(2"/2¢, |xo + X1 , |20 + 21)).

Subtract |x), |z1) to return to registers to [x1) |Xo) [21) |20).

on L 5 W N

42

