
How to prove you have built a quantum computer

Gregory D. Kahanamoku-Meyer
November 2, 2023

1

Introduction

... or, how did I get here?

• Grew up and went to college in New
England

• Recently completed PhD at UC Berkeley
• Spouse is a SOEST Early Career Research
Fellow at UH Manoa

• Currently living on O‘ahu while
continuing my research remotely as a
postdoc

2

Introduction

... or, how did I get here?
• Grew up and went to college in New
England

• Recently completed PhD at UC Berkeley
• Spouse is a SOEST Early Career Research
Fellow at UH Manoa

• Currently living on O‘ahu while
continuing my research remotely as a
postdoc

2

Introduction

... or, how did I get here?
• Grew up and went to college in New
England

• Recently completed PhD at UC Berkeley

• Spouse is a SOEST Early Career Research
Fellow at UH Manoa

• Currently living on O‘ahu while
continuing my research remotely as a
postdoc

2

Introduction

... or, how did I get here?
• Grew up and went to college in New
England

• Recently completed PhD at UC Berkeley
• Spouse is a SOEST Early Career Research
Fellow at UH Manoa

• Currently living on O‘ahu while
continuing my research remotely as a
postdoc

2

Introduction

... or, how did I get here?
• Grew up and went to college in New
England

• Recently completed PhD at UC Berkeley
• Spouse is a SOEST Early Career Research
Fellow at UH Manoa

• Currently living on O‘ahu while
continuing my research remotely as a
postdoc

2

Quantum computing: motivation

How hard is simulating quantum systems with (regular) computers?

3

Quantum computing: motivation

How hard is simulating quantum systems with (regular) computers?

Single quantum system with two states

Ex: spin-1/2 particle

|0⟩

|1⟩

|0⟩

|1⟩

Quantum state represented by
2 complex numbers

3

Quantum computing: motivation

How hard is simulating quantum systems with (regular) computers?

Single quantum system with two states

Ex: spin-1/2 particle
|0⟩

|1⟩

|0⟩

|1⟩

Quantum state represented by
2 complex numbers

3

Quantum computing: motivation

How hard is simulating quantum systems with (regular) computers?

15 quantum particles with two states each

Ex: 15 spin-1/2 particles

Quantum state represented by
215 ≈ 30, 000 complex numbers

3

Quantum computing: motivation

How hard is simulating quantum systems with (regular) computers?

15 quantum particles with two states each

Ex: 15 spin-1/2 particles

Quantum state represented by
215 ≈ 30, 000 complex numbers

3

Quantum computing: motivation

How hard is simulating quantum systems with (regular) computers?

30 quantum particles with two states each

Ex: 30 spin-1/2 particles

Quantum state represented by
230 ≈ 1, 000, 000, 000 complex numbers

3

Quantum computing: motivation

How hard is simulating quantum systems with (regular) computers?

30 quantum particles with two states each

Ex: 30 spin-1/2 particles

Quantum state represented by
230 ≈ 1, 000, 000, 000 complex numbers

3

Quantum computing: motivation

Complexity grows exponentially with the number of particles!

Can we use that complexity to perform computations?

4

Quantum computing: motivation

Complexity grows exponentially with the number of particles!

Can we use that complexity to perform computations?

4

Quantum computing: history

Early 90s: Theoretical algorithms for “bespoke” problems built for quantum computers

5

Quantum computing: history

Early 90s: Theoretical algorithms for “bespoke” problems built for quantum computers

5

Quantum computing: history

Mid 90s: Theoretical algorithms for real problems!

Grover search

Faster searching

0 1 2 3 4 5 6 7 8 9 10

Shor’s algorithm

Faster integer factorization

pq → p · q

6

Quantum computing: history

Mid 90s: Theoretical algorithms for real problems!

Grover search

Faster searching

0 1 2 3 4 5 6 7 8 9 10

Shor’s algorithm

Faster integer factorization

pq → p · q

6

Framing the question

Goal: construct a physical system that can actually run these algorithms!

This is not a real headline! It is a joke.

7

Framing the question

Goal: construct a physical system that can actually run these algorithms!

This is not a real headline! It is a joke.

7

Framing the question

Goal: construct a physical system that can actually run these algorithms!

Suppose someone opens a cloud service to perform quantum computations.

How do we test if they are really doing anything quantum?

With only classical questions and answers?

Maybe we can use those algorithms I just mentioned?

7

Framing the question

Goal: construct a physical system that can actually run these algorithms!

Suppose someone opens a cloud service to perform quantum computations.

How do we test if they are really doing anything quantum?

With only classical questions and answers?

Maybe we can use those algorithms I just mentioned?

7

Framing the question

Goal: construct a physical system that can actually run these algorithms!

Suppose someone opens a cloud service to perform quantum computations.

How do we test if they are really doing anything quantum?

With only classical questions and answers?

Maybe we can use those algorithms I just mentioned?

7

Grover search

Cost to find the “good” value from N indices 0 1 2 3 4 5 6 7 8 9 10

Quantum

O(
√
N) operations

Classical

O(N) operations

8

Grover search

Cost to find the “good” value from N indices 0 1 2 3 4 5 6 7 8 9 10

Quantum

O(
√
N) operations

Classical

O(N) operations

8

Grover search

Cost to find the “good” value from N indices 0 1 2 3 4 5 6 7 8 9 10

Quantum

O(
√
N) operations

Classical

O(N) operations

8

Grover search

Cost to find the “good” value from N indices 0 1 2 3 4 5 6 7 8 9 10

Quantum

O(
√
N) operations

Classical

O(N) operations

8

Grover search

Cost to find the “good” value from N indices 0 1 2 3 4 5 6 7 8 9 10

Quantum

O(
√
N) operations

Classical

O(N) operations

8

Grover search

Cost to find the “good” value from N indices 0 1 2 3 4 5 6 7 8 9 10

Quantum

O(
√
N) operations

Classical

O(N) operations

8

Challenge: Classical computers are fast!

Fewer quantum operations, but must account for differences
in number of operations per second

Quantum

O(
√
N) operations

104 operations per second

Classical

O(N) operations
1010 operations per second

9

Challenge: Classical computers are fast!

Fewer quantum operations, but must account for differences
in number of operations per second

Quantum

O(
√
N) operations

104 operations per second

Classical

O(N) operations
1010 operations per second

9

Challenge: Classical computers are fast!

Fewer quantum operations, but must account for differences
in number of operations per second

Quantum

O(
√
N) operations

104 operations per second

Classical

O(N) operations
1010 operations per second

9

Quantum speedups

Task Theoretical speedup Practical in 2023?
Grover search Somewhat fewer ops. Quantum computers too slow

10

Shor’s algorithm

Goal: factor numbers pq = p · q

Quantum Classical

11

Shor’s algorithm

Goal: factor numbers pq = p · q

Quantum Classical

11

Shor’s algorithm

Goal: factor numbers pq = p · q

Quantum Classical

11

Shor’s algorithm

Goal: factor numbers pq = p · q

Quantum Classical

11

Shor’s algorithm

Goal: factor numbers pq = p · q

Quantum Classical

11

Shor’s algorithm

Goal: factor numbers pq = p · q

Quantum Classical

11

Shor’s algorithm

Goal: factor numbers pq = p · q

Quantum Classical

11

Challenge: quantum computers too noisy

Quantum information very fragile!

Quantum Classical

12

Challenge: quantum computers too noisy

Quantum information very fragile! And devices are small!

Quantum Classical

size of largest existing device

12

Quantum advantage in practice

Task Theoretical speedup Practical in 2023?
Grover search Somewhat fewer ops. Too slow, small and noisy
Shor’s factoring Exponentially fewer ops. Too small and noisy

13

Quantum advantage in practice

Task Theoretical speedup Practical in 2023?
Grover search Somewhat fewer ops. Too small, slow and noisy
Shor’s factoring Exponentially fewer ops. Too small and noisy
Machine learning Depends Too small, slow and noisy

Chemistry Depends Too small, slow and noisy

13

Demonstrating “quantum advantage”

To prove we have built a quantum computer, the problem doesn’t have to be useful

Is there anything current quantum computers can do that classical ones can’t?

10 years ago: nope!

Trivial to simulate!

Google/UCSB’s 5-qubit chip

14

Demonstrating “quantum advantage”

To prove we have built a quantum computer, the problem doesn’t have to be useful

Is there anything current quantum computers can do that classical ones can’t?

10 years ago: nope!

Trivial to simulate!

Google/UCSB’s 5-qubit chip

14

Demonstrating “quantum advantage”

To prove we have built a quantum computer, the problem doesn’t have to be useful

Is there anything current quantum computers can do that classical ones can’t?

10 years ago: nope!

Trivial to simulate!

Google/UCSB’s 5-qubit chip 14

Demonstrating “quantum advantage”

To prove we have built a quantum computer, the problem doesn’t have to be useful

Is there anything current quantum computers can do that classical ones can’t?

Since 4 years ago: maybe??

Very hard to simulate!

Google’s 53-qubit chip 14

Random circuit sampling

What problem do we try to solve? Something quantum-related!

Sampling from an “speckle” (interference pattern)

By Epzcaw - Own work, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=4608610

Mathematical problem:

1. Define some operations that generate a
complicated quantum state

2. Quantum state defines a probability
distribution of measurement outcomes

3. Task: Generate samples from that
distribution

If distribution is complicated enough,
generating samples is classically hard

15

Random circuit sampling

What problem do we try to solve? Something quantum-related!

Sampling from an “speckle” (interference pattern)

By Epzcaw - Own work, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=4608610

Mathematical problem:

1. Define some operations that generate a
complicated quantum state

2. Quantum state defines a probability
distribution of measurement outcomes

3. Task: Generate samples from that
distribution

If distribution is complicated enough,
generating samples is classically hard

15

Random circuit sampling

What problem do we try to solve? Something quantum-related!

Sampling from an “speckle” (interference pattern)

By Epzcaw - Own work, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=4608610

Mathematical problem:
1. Define some operations that generate a
complicated quantum state

2. Quantum state defines a probability
distribution of measurement outcomes

3. Task: Generate samples from that
distribution

If distribution is complicated enough,
generating samples is classically hard

15

Random circuit sampling

What problem do we try to solve? Something quantum-related!

Sampling from an “speckle” (interference pattern)

By Epzcaw - Own work, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=4608610

Mathematical problem:
1. Define some operations that generate a
complicated quantum state

2. Quantum state defines a probability
distribution of measurement outcomes

3. Task: Generate samples from that
distribution

If distribution is complicated enough,
generating samples is classically hard

15

Random circuit sampling

What problem do we try to solve? Something quantum-related!

Sampling from an “speckle” (interference pattern)

By Epzcaw - Own work, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=4608610

Mathematical problem:
1. Define some operations that generate a
complicated quantum state

2. Quantum state defines a probability
distribution of measurement outcomes

3. Task: Generate samples from that
distribution

If distribution is complicated enough,
generating samples is classically hard

15

Random circuit sampling

What problem do we try to solve? Something quantum-related!

Sampling from an “speckle” (interference pattern)

By Epzcaw - Own work, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=4608610

Mathematical problem:
1. Define some operations that generate a
complicated quantum state

2. Quantum state defines a probability
distribution of measurement outcomes

3. Task: Generate samples from that
distribution

If distribution is complicated enough,
generating samples is classically hard

15

Google’s results

16

A subtle challenge: verification

Google published a bunch of samples from a “hard” probability distribution.

How do we confirm they actually came from that distribution?

1. “Benchmark” quantum device by sampling from related but easy distributions
2. Assume nothing weird happens when you switch to the hard distribution

17

A subtle challenge: verification

Google published a bunch of samples from a “hard” probability distribution.

How do we confirm they actually came from that distribution?

1. “Benchmark” quantum device by sampling from related but easy distributions
2. Assume nothing weird happens when you switch to the hard distribution

17

A subtle challenge: verification

Google published a bunch of samples from a “hard” probability distribution.

How do we confirm they actually came from that distribution?

1. “Benchmark” quantum device by sampling from related but easy distributions

2. Assume nothing weird happens when you switch to the hard distribution

17

A subtle challenge: verification

Google published a bunch of samples from a “hard” probability distribution.

How do we confirm they actually came from that distribution?

1. “Benchmark” quantum device by sampling from related but easy distributions
2. Assume nothing weird happens when you switch to the hard distribution

17

Quantum advantage

Task Theoretical speedup Practical in 2023?
Grover search Somewhat fewer ops. Too small, slow and noisy
Shor’s factoring Exponentially fewer ops. Too small and noisy
Machine learning Depends Too small, slow and noisy

Chemistry Depends Too small, slow and noisy
Random sampling Exponentially fewer ops. Yes, but can’t check answer

18

Verifiable quantum advantage

We want a problem that is hard to classically solve, but easy to classically check

Factoring and search are such problems!

But we also want achievable on near-term quantum device

19

Verifiable quantum advantage

We want a problem that is hard to classically solve, but easy to classically check

Factoring and search are such problems!

But we also want achievable on near-term quantum device

19

Verifiable quantum advantage

We want a problem that is hard to classically solve, but easy to classically check

Factoring and search are such problems!

But we also want achievable on near-term quantum device

19

NISQ verifiable quantum advantage

NISQ = “noisy intermediate-scale quantum”

20

Adding structure to sampling problems

Example: evolve a quantum system under “IQP” Hamiltonians (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2008]: Hide a secret in H, such that evolving and sampling gives
results correlated with secret

[Bremner, Josza, Shepherd 2010]: classically simulating IQP Hamiltonians is hard

But how sure are we that the secret is really hidden?

21

Adding structure to sampling problems

Example: evolve a quantum system under “IQP” Hamiltonians (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2008]: Hide a secret in H, such that evolving and sampling gives
results correlated with secret

[Bremner, Josza, Shepherd 2010]: classically simulating IQP Hamiltonians is hard

But how sure are we that the secret is really hidden?

21

Adding structure to sampling problems

Example: evolve a quantum system under “IQP” Hamiltonians (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2008]: Hide a secret in H, such that evolving and sampling gives
results correlated with secret

[Bremner, Josza, Shepherd 2010]: classically simulating IQP Hamiltonians is hard

But how sure are we that the secret is really hidden?

21

Adding structure to sampling problems

Example: evolve a quantum system under “IQP” Hamiltonians (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2008]: Hide a secret in H, such that evolving and sampling gives
results correlated with secret

[Bremner, Josza, Shepherd 2010]: classically simulating IQP Hamiltonians is hard

But how sure are we that the secret is really hidden?

21

The $25 challenge

22

Classical algorithm to extract secret

Adding structure opens opportunities for classical cheating

[Bremner, Cheng, Ji 2023]: New scheme where the secret is (hopefully) hidden better

23

Classical algorithm to extract secret

Adding structure opens opportunities for classical cheating

[Bremner, Cheng, Ji 2023]: New scheme where the secret is (hopefully) hidden better

23

Classical algorithm to extract secret

Adding structure opens opportunities for classical cheating

[Bremner, Cheng, Ji 2023]: New scheme where the secret is (hopefully) hidden better 23

NISQ verifiable quantum advantage

NISQ = “noisy intermediate-scale quantum”

24

Making number theory problems less costly

Generating a quantum state that involves the factors is easy—
getting the factors out as classical values is the hard part!

Idea from cryptography: zero-knowledge proof

25

Making number theory problems less costly

Generating a quantum state that involves the factors is easy—
getting the factors out as classical values is the hard part!

Idea from cryptography: zero-knowledge proof

25

Zero-knowledge proofs: differentiating colors

Challenge: Proving two balls are different colors

without actually telling them the colors?

Solution:

1. They show you one ball, then hide it behind their back
2. They pull out another, you tell them same or different

This constitutes a zero-knowledge interactive proof.

Seeing color ⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

26

Zero-knowledge proofs: differentiating colors

Challenge: Proving two balls are different colors
without actually telling them the colors?

Solution:

1. They show you one ball, then hide it behind their back
2. They pull out another, you tell them same or different

This constitutes a zero-knowledge interactive proof.

Seeing color ⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

26

Zero-knowledge proofs: differentiating colors

Challenge: Proving two balls are different colors
without actually telling them the colors?

Solution:

1. They show you one ball, then hide it behind their back

2. They pull out another, you tell them same or different

This constitutes a zero-knowledge interactive proof.

Seeing color ⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

26

Zero-knowledge proofs: differentiating colors

Challenge: Proving two balls are different colors
without actually telling them the colors?

Solution:

1. They show you one ball, then hide it behind their back
2. They pull out another, you tell them same or different

This constitutes a zero-knowledge interactive proof.

Seeing color ⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

26

Zero-knowledge proofs: differentiating colors

Challenge: Proving two balls are different colors
without actually telling them the colors?

Solution:

1. They show you one ball, then hide it behind their back
2. They pull out another, you tell them same or different

This constitutes a zero-knowledge interactive proof.

Seeing color ⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

26

Zero-knowledge proofs: differentiating colors

Challenge: Proving two balls are different colors
without actually telling them the colors?

Solution:

1. They show you one ball, then hide it behind their back
2. They pull out another, you tell them same or different

This constitutes a zero-knowledge interactive proof.

Seeing color ⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

26

Zero-knowledge proofs: differentiating colors

Challenge: Proving two balls are different colors
without actually telling them the colors?

Solution:

1. They show you one ball, then hide it behind their back
2. They pull out another, you tell them same or different

This constitutes a zero-knowledge interactive proof.

Seeing color ⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

26

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

10100111100
11010110011
11101100100
10011000011

Prover Verifier

...

Round 1: Prover commits to holding a specific quantum state

Round 2: Verifier asks for measurement in random basis, prover performs it

By randomizing choice of basis and repeating interaction,
can ensure prover actually has the promised quantum state

Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640).

Can be extended to verify arbitrary quantum computations! (arXiv:1804.01082)

27

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

10100111100
11010110011
11101100100
10011000011

measurement

commitment

Prover Verifier

...

Round 1: Prover commits to holding a specific quantum state

Round 2: Verifier asks for measurement in random basis, prover performs it

By randomizing choice of basis and repeating interaction,
can ensure prover actually has the promised quantum state

Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640).

Can be extended to verify arbitrary quantum computations! (arXiv:1804.01082)

27

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

10100111100
11010110011
11101100100
10011000011

measurement

commitment

Prover Verifier

...

Round 1: Prover commits to holding a specific quantum state

Round 2: Verifier asks for measurement in random basis, prover performs it

By randomizing choice of basis and repeating interaction,
can ensure prover actually has the promised quantum state

Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640).

Can be extended to verify arbitrary quantum computations! (arXiv:1804.01082)
27

Commitment: a secret quantum state

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f , there exist (x0, x1) such that y = f (x0) = f (x1).

10100111100
11010110011
11101100100
10011000011

Generate entangled superposition f←−−−−−−−−−−−−−− Pick 2-to-1 function f∑
x |x〉 |f (x)〉

Measure 2nd register as y
y−−−−−−−−−−−−−−→ Store y as commitment

Prover has committed to the state (|x0〉 + |x1〉) |y〉

28

Commitment: a secret quantum state

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f , there exist (x0, x1) such that y = f (x0) = f (x1).

10100111100
11010110011
11101100100
10011000011

Generate entangled superposition f←−−−−−−−−−−−−−− Pick 2-to-1 function f∑
x |x〉 |f (x)〉

Measure 2nd register as y
y−−−−−−−−−−−−−−→ Store y as commitment

Prover has committed to the state (|x0〉 + |x1〉) |y〉

28

Commitment: a secret quantum state

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f , there exist (x0, x1) such that y = f (x0) = f (x1).

10100111100
11010110011
11101100100
10011000011

Generate entangled superposition f←−−−−−−−−−−−−−− Pick 2-to-1 function f∑
x |x〉 |f (x)〉

Measure 2nd register as y
y−−−−−−−−−−−−−−→ Store y as commitment

Prover has committed to the state (|x0〉 + |x1〉) |y〉
28

State commitment (round 1): trapdoor claw-free functions

Prover has committed to (|x0〉 + |x1〉) |y〉 with y = f (x0) = f (x1)

Source of power: cryptographic properties of 2-to-1 function f

• “Claw-free”: It is cryptographically hard to find any pair of colliding inputs
• Trapdoor: With the secret key, easy to classically compute the two inputs mapping to
any output

Cheating classical prover can’t forge the state;
classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses
superposition + wavefunction collapse—inherently quantum!

29

State commitment (round 1): trapdoor claw-free functions

Prover has committed to (|x0〉 + |x1〉) |y〉 with y = f (x0) = f (x1)

Source of power: cryptographic properties of 2-to-1 function f

• “Claw-free”: It is cryptographically hard to find any pair of colliding inputs
• Trapdoor: With the secret key, easy to classically compute the two inputs mapping to
any output

Cheating classical prover can’t forge the state;
classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses
superposition + wavefunction collapse—inherently quantum!

29

State commitment (round 1): trapdoor claw-free functions

Prover has committed to (|x0〉 + |x1〉) |y〉 with y = f (x0) = f (x1)

Source of power: cryptographic properties of 2-to-1 function f

• “Claw-free”: It is cryptographically hard to find any pair of colliding inputs

• Trapdoor: With the secret key, easy to classically compute the two inputs mapping to
any output

Cheating classical prover can’t forge the state;
classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses
superposition + wavefunction collapse—inherently quantum!

29

State commitment (round 1): trapdoor claw-free functions

Prover has committed to (|x0〉 + |x1〉) |y〉 with y = f (x0) = f (x1)

Source of power: cryptographic properties of 2-to-1 function f

• “Claw-free”: It is cryptographically hard to find any pair of colliding inputs
• Trapdoor: With the secret key, easy to classically compute the two inputs mapping to
any output

Cheating classical prover can’t forge the state;
classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses
superposition + wavefunction collapse—inherently quantum!

29

State commitment (round 1): trapdoor claw-free functions

Prover has committed to (|x0〉 + |x1〉) |y〉 with y = f (x0) = f (x1)

Source of power: cryptographic properties of 2-to-1 function f

• “Claw-free”: It is cryptographically hard to find any pair of colliding inputs
• Trapdoor: With the secret key, easy to classically compute the two inputs mapping to
any output

Cheating classical prover can’t forge the state;
classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses
superposition + wavefunction collapse—inherently quantum!

29

State commitment (round 1): trapdoor claw-free functions

Prover has committed to (|x0〉 + |x1〉) |y〉 with y = f (x0) = f (x1)

Source of power: cryptographic properties of 2-to-1 function f

• “Claw-free”: It is cryptographically hard to find any pair of colliding inputs
• Trapdoor: With the secret key, easy to classically compute the two inputs mapping to
any output

Cheating classical prover can’t forge the state;
classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses
superposition + wavefunction collapse—inherently quantum!

29

Trapdoor claw-free function example

f (x) = x2 mod N, where N = pq

• Claw-free: Easy to compute p,q given a colliding pair—thus finding collisions is as
hard as factoring

Example: Let p = 5, q = 7; then pq = 35.
We have 42 ≡ 112 ≡ 16 (mod 35); and 11− 4 = 7

30

Trapdoor claw-free function example

f (x) = x2 mod N, where N = pq

• Claw-free: Easy to compute p,q given a colliding pair—thus finding collisions is as
hard as factoring

Example: Let p = 5, q = 7; then pq = 35.
We have 42 ≡ 112 ≡ 16 (mod 35); and 11− 4 = 7

30

Trapdoor claw-free function example

f (x) = x2 mod N, where N = pq

• Claw-free: Easy to compute p,q given a colliding pair—thus finding collisions is as
hard as factoring

Example: Let p = 5, q = 7; then pq = 35.

We have 42 ≡ 112 ≡ 16 (mod 35); and 11− 4 = 7

30

Trapdoor claw-free function example

f (x) = x2 mod N, where N = pq

• Claw-free: Easy to compute p,q given a colliding pair—thus finding collisions is as
hard as factoring

Example: Let p = 5, q = 7; then pq = 35.
We have 42 ≡ 112 ≡ 16 (mod 35); and 11− 4 = 7

30

How to implement it?

To generate the entangled superposition:

Need to square a number on a quantum computer!

Idea: use the same circuits that we do in classical computers?

31

How to implement it?

To generate the entangled superposition:

Need to square a number on a quantum computer!

Idea: use the same circuits that we do in classical computers?

31

Challenge: reversibility

Coherent quantum circuits must be reversible!

a b a ∧ b
0 0 0
0 1 0
1 0 0
1 1 1

a
b

a∧b

Classical AND

If you’re not careful, you will use up all of your precious qubits
storing this “garbage data”!

32

Challenge: reversibility

Coherent quantum circuits must be reversible!

a b a ∧ b
0 0 0
0 1 0
1 0 0
1 1 1

a
b

a∧b

Classical AND

If you’re not careful, you will use up all of your precious qubits
storing this “garbage data”!

32

Challenge: reversibility

Coherent quantum circuits must be reversible!

a b a ∧ b
0 0 0
0 1 0
1 0 0
1 1 1

If you’re not careful, you will use up all of your precious qubits
storing this “garbage data”!

32

Challenge: reversibility

Coherent quantum circuits must be reversible!

a b a ∧ b
0 0 0
0 1 0
1 0 0
1 1 1

If you’re not careful, you will use up all of your precious qubits
storing this “garbage data”!

32

Result: fast quantum multiplication with little space overhead

Previous best:

Efficiently multiplying two 2048-bit numbers required over 12,000 extra qubits

New paper (in prep.):

Efficiently multiplication with just 1 extra qubit

Applications include proving “quantumness” but also factoring and other algorithms!

33

Result: fast quantum multiplication with little space overhead

Previous best:

Efficiently multiplying two 2048-bit numbers required over 12,000 extra qubits

New paper (in prep.):

Efficiently multiplication with just 1 extra qubit

Applications include proving “quantumness” but also factoring and other algorithms!

33

Result: fast quantum multiplication with little space overhead

Previous best:

Efficiently multiplying two 2048-bit numbers required over 12,000 extra qubits

New paper (in prep.):

Efficiently multiplication with just 1 extra qubit

Applications include proving “quantumness” but also factoring and other algorithms!

33

Result: fast quantum multiplication with little space overhead

Previous best:

Efficiently multiplying two 2048-bit numbers required over 12,000 extra qubits

New paper (in prep.):

Efficiently multiplication with just 1 extra qubit

Applications include proving “quantumness” but also factoring and other algorithms!

33

Putting it all together

Using Shor’s factoring algorithm to prove you are quantum:
∼ 10, 000, 000, 000 quantum operations

Using the new protocol:
∼ 2, 000, 000 quantum operations

34

Putting it all together

Using Shor’s factoring algorithm to prove you are quantum:
∼ 10, 000, 000, 000 quantum operations

Using the new protocol:
∼ 2, 000, 000 quantum operations

34

Proof-of-principle experiment

Trapped ions at the University of Maryland

For interactive protocol, need to measure a subset of the quantum particles!

35

Proof-of-principle experiment

Trapped ions at the University of Maryland

For interactive protocol, need to measure a subset of the quantum particles!

35

Proof-of-principle experiment

Trapped ions at the University of Maryland

For interactive protocol, need to measure a subset of the quantum particles!

35

Proof-of-principle experiment

Trapped ions at the University of Maryland

For interactive protocol, need to measure a subset of the quantum particles!

35

Proof-of-principle experiment

Trapped ions at the University of Maryland

For interactive protocol, need to measure a subset of the quantum particles!

35

Proof-of-principle experiment

Trapped ions at the University of Maryland

For interactive protocol, need to measure a subset of the quantum particles!

35

Proof-of-principle experiment

Trapped ions at the University of Maryland

For interactive protocol, need to measure a subset of the quantum particles!

35

Proof-of-principle experiment

Trapped ions at the University of Maryland

For interactive protocol, need to measure a subset of the quantum particles!

35

Proof-of-principle experiment

Trapped ions at the University of Maryland

For interactive protocol, need to measure a subset of the quantum particles!

35

Proof-of-principle experiment

Trapped ions at the University of Maryland

For interactive protocol, need to measure a subset of the quantum particles!

35

Proof-of-principle experiment

Trapped ions at the University of Maryland

For interactive protocol, need to measure a subset of the quantum particles!

35

Proof-of-principle experiment

Trapped ions at the University of Maryland

For interactive protocol, need to measure a subset of the quantum particles!

35

Summary

• Current generation quantum computers: slow, small, and noisy

• Large recent sampling experiments have no way to check the answer
• Adding structure to those experiments can allow classical spoofing
• Interactive protocols give us “proofs of quantumness” that can be efficiently checked
• Using them requires doing multiplication—it can be performed efficiently with just 1
extra qubit

Thank you!

36

Summary

• Current generation quantum computers: slow, small, and noisy
• Large recent sampling experiments have no way to check the answer

• Adding structure to those experiments can allow classical spoofing
• Interactive protocols give us “proofs of quantumness” that can be efficiently checked
• Using them requires doing multiplication—it can be performed efficiently with just 1
extra qubit

Thank you!

36

Summary

• Current generation quantum computers: slow, small, and noisy
• Large recent sampling experiments have no way to check the answer
• Adding structure to those experiments can allow classical spoofing

• Interactive protocols give us “proofs of quantumness” that can be efficiently checked
• Using them requires doing multiplication—it can be performed efficiently with just 1
extra qubit

Thank you!

36

Summary

• Current generation quantum computers: slow, small, and noisy
• Large recent sampling experiments have no way to check the answer
• Adding structure to those experiments can allow classical spoofing
• Interactive protocols give us “proofs of quantumness” that can be efficiently checked

• Using them requires doing multiplication—it can be performed efficiently with just 1
extra qubit

Thank you!

36

Summary

• Current generation quantum computers: slow, small, and noisy
• Large recent sampling experiments have no way to check the answer
• Adding structure to those experiments can allow classical spoofing
• Interactive protocols give us “proofs of quantumness” that can be efficiently checked
• Using them requires doing multiplication—it can be performed efficiently with just 1
extra qubit

Thank you!

36

Summary

• Current generation quantum computers: slow, small, and noisy
• Large recent sampling experiments have no way to check the answer
• Adding structure to those experiments can allow classical spoofing
• Interactive protocols give us “proofs of quantumness” that can be efficiently checked
• Using them requires doing multiplication—it can be performed efficiently with just 1
extra qubit

Thank you!

36

