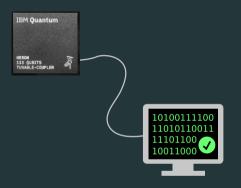
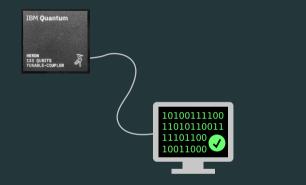
The Jacobi Factoring Circuit

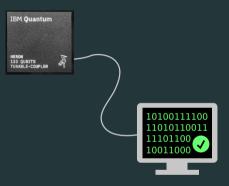
Classically-hard factoring in sublinear quantum space and depth

Gregory D. Kahanamoku-Meyer*, Seyoon Ragavan*, Vinod Vaikuntanathan*, Katherine van Kirk[†] *MIT, [†]Harvard November 19, 2024



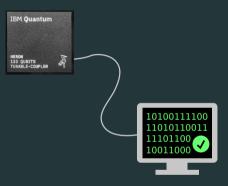


Ideal protocol:



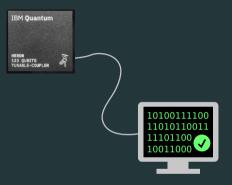
Ideal protocol:

• **Provably classically hard**, reducible to an *established* problem



Ideal protocol:

- **Provably classically hard**, reducible to an *established* problem
- Polynomial-time classical verification



Ideal protocol:

- **Provably classically hard**, reducible to an *established* problem
- Polynomial-time classical verification
- Small circuits in terms of qubits, gates, and depth

Algorithms for Quantum Computation: Discrete Logarithms and Factoring

Peter W. Shor AT&T Bell Labs Room 2D-149 600 Mountain Ave. Murray Hill, NJ 07974, USA

Protocol: Pick primes p, q, ask the quantum device to factor *n*-bit N = pq.

Algorithms for Quantum Computation: Discrete Logarithms and Factoring

Peter W. Shor AT&T Bell Labs Room 2D-149 600 Mountain Ave. Murray Hill, NJ 07974, USA

Protocol: Pick primes p, q, ask the quantum device to factor *n*-bit N = pq.

Gates: $\widetilde{\mathcal{O}}(n^2)$ Depth: $\widetilde{\mathcal{O}}(n)$ Qubits: $\widetilde{\mathcal{O}}(n)$

An Efficient Quantum Factoring Algorithm

Oded Regev^{*}

Protocol: Pick primes p, q, ask the quantum device to factor *n*-bit N = pq.

Gates: $\widetilde{\mathcal{O}}(n^{3/2})$ Depth: $\widetilde{\mathcal{O}}(n^{1/2})$ Qubits: $\widetilde{\mathcal{O}}(n)^*$

* with the optimizations of Ragavan and Vaikuntanathan [arXiv:2310.00899]

Article | Open access | Published: 01 August 2022

Classically verifiable quantum advantage from a computational Bell test

Gregory D. Kahanamoku-Meyer 🖾, Soonwon Choi, Umesh V. Vazirani 🖾 & Norman Y. Yao 🖾

Protocol:

3-round interactive protocol; quantum device evaluates $x^2 \mod N$ for *n*-bit N = pq

Gates: $\widetilde{\mathcal{O}}(n)$ Depth: $\mathcal{O}(\operatorname{polylog} n)$ Qubits: $\widetilde{\mathcal{O}}(n)$

Article | Open access | Published: 01 August 2022

Classically verifiable quantum advantage from a computational Bell test

Gregory D. Kahanamoku-Meyer 🖾, Soonwon Choi, Umesh V. Vazirani 🖾 & Norman Y. Yao 🖾

Protocol:

3-round interactive protocol; quantum device evaluates $x^2 \mod N$ for *n*-bit N = pq

Gates: $\widetilde{\mathcal{O}}(n)$ Depth: $\mathcal{O}(\operatorname{polylog} n)$ Qubits: $\widetilde{\mathcal{O}}(n)$

... note it doesn't actually factor the number!

Algorithm	Gates	Depth	Qubits
Shor	$\widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n)$	$\widetilde{\mathcal{O}}(n)$
Regev + RV23	$\widetilde{\mathcal{O}}(n^{3/2})$	$\widetilde{\mathcal{O}}(n^{1/2})$	$\widetilde{\mathcal{O}}(n)$
$x^2 \mod N$	$\widetilde{\mathcal{O}}(n)$	$\widetilde{\mathcal{O}}(n^0)$	$\widetilde{\mathcal{O}}(n)$

All algorithms implemented with fast, low-depth multipliers. Tildes indicate omitted polylog factors.

Algorithm	Gates	Depth	Qubits
Shor	$\widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n)$	$\widetilde{\mathcal{O}}(n)$
Regev + RV23	$\widetilde{\mathcal{O}}(n^{3/2})$	$\widetilde{\mathcal{O}}(n^{1/2})$	$\widetilde{\mathcal{O}}(n)$
$x^2 \mod N$	$\widetilde{\mathcal{O}}(n)$	$\widetilde{\mathcal{O}}(n^0)$	$\widetilde{\mathcal{O}}(n)$

All algorithms implemented with fast, low-depth multipliers. Tildes indicate omitted polylog factors.

"Factoring numbers of practical significance requires far more qubits than available in the near future." –Wikipedia: Shor's algorithm

Algorithm	Gates	Depth	Qubits
Shor	$\widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n)$	$\widetilde{\mathcal{O}}(n)$
Regev + RV23	$\widetilde{\mathcal{O}}(n^{3/2})$	$\widetilde{\mathcal{O}}(n^{1/2})$	$\widetilde{\mathcal{O}}(n)$
$x^2 \mod N$	$\widetilde{\mathcal{O}}(n)$	$\widetilde{\mathcal{O}}(n^0)$	$\widetilde{\mathcal{O}}(n)$

All algorithms implemented with fast, low-depth multipliers. Tildes indicate omitted polylog factors.

"Factoring numbers of practical significance requires far more qubits than available in the near future." –Wikipedia: Shor's algorithm

"Cool but that's still too many qubits" –every experimentalist when I talk about $x^2 \mod N$

For *n*-bit numbers of the form N = pq:

Algorithm	Gates	Depth	Qubits
Shor	$\widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n)$	$\widetilde{\mathcal{O}}(n)$
Regev + RV23	$\widetilde{\mathcal{O}}(n^{3/2})$	$\widetilde{\mathcal{O}}(n^{1/2})$	$\widetilde{\mathcal{O}}(n)$
$x^2 \mod N$	$\widetilde{\mathcal{O}}(n)$	$\widetilde{\mathcal{O}}(n^0)$	$\widetilde{\mathcal{O}}(n)$

For *n*-bit numbers of the form $N = p^2 q$, with $q < 2^m$:

Algorithm	Gates	Depth	Qubits
This work	$\widetilde{\mathcal{O}}(n)$	$\widetilde{\mathcal{O}}(n/m+m)$	$\widetilde{\mathcal{O}}(m)$

For *n*-bit numbers of the form N = pq:

Algorithm	Gates	Depth	Qubits
Shor	$\widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n)$	$\widetilde{\mathcal{O}}(n)$
Regev + RV23	$\widetilde{\mathcal{O}}(n^{3/2})$	$\widetilde{\mathcal{O}}(n^{1/2})$	$\widetilde{\mathcal{O}}(n)$
$x^2 \mod N$	$\widetilde{\mathcal{O}}(n)$	$\widetilde{\mathcal{O}}(n^0)$	$\widetilde{\mathcal{O}}(n)$

For *n*-bit numbers of the form $N = p^2 q$, with $q < 2^m$:

Algorithm	Gates	Depth	Qubits
This work	$\widetilde{\mathcal{O}}(n)$	$\widetilde{\mathcal{O}}(n/m+m)$	$\widetilde{\mathcal{O}}(m)$

Space and depth proportional to the length of the factor!

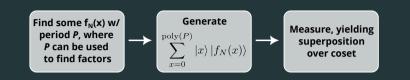
Why do we need O(n) qubits?

Find some $f_N(x)$ w/ period P, where P can be used to find factors $f_N(x) = 0 \quad 1 \quad 2 \quad \cdots$

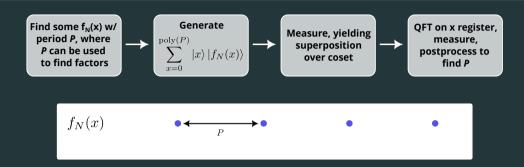
Why do we need O(n) qubits?

Find some $f_N(x)$ w/ period P, where P can be used to find factors $\overset{\text{Generate}}{\underset{x=0}{\overset{\text{poly}(P)}{\sum}}} |x\rangle |f_N(x)\rangle$

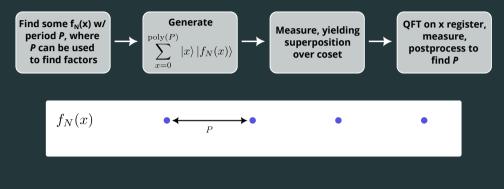
Why do we need $\mathcal{O}(n)$ qubits?



Why do we need O(n) qubits?



Why do we need O(n) qubits?

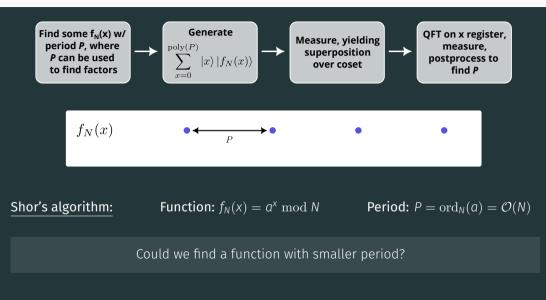


Shor's algorithm:

Function: $f_N(x) = a^x \mod N$ Period: P =

Period: $P = \operatorname{ord}_N(a) = \mathcal{O}(N)$

Why do we need $\mathcal{O}(n)$ qubits?



Legendre symbol

Legendre symbol For a prime *p*:

$$\left(\frac{x}{p}\right) = \begin{cases} 0 & \text{if } x \equiv 0 \pmod{p} \\ 1 & \text{if } \exists w \text{ s.t. } w^2 \equiv x \pmod{p} \\ -1 & \text{otherwise} \end{cases}$$

Legendre symbol For a prime *p*:

$$\left(\frac{x}{p}\right) = \begin{cases} 0 & \text{if } x \equiv 0 \pmod{p} \\ 1 & \text{if } \exists w \text{ s.t. } w^2 \equiv x \pmod{p} \\ -1 & \text{otherwise} \end{cases}$$

Legendre symbol is 1) efficient to compute given x and p, 2) periodic with period p

Jacobi symbol For a composite number $N = \prod_i p_i$:

 $\left(\frac{x}{N}\right) = \prod_{i} \left(\frac{x}{p_{i}}\right)$

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period...?

For N = pq:

$$\left(\frac{x}{N}\right) = \left(\frac{x}{p}\right) \left(\frac{x}{q}\right)$$

For N = pq:

$$\left(\frac{x}{N}\right) = \left(\frac{x}{p}\right) \left(\frac{x}{q}\right)$$

Period is N—not helpful for factoring!

For $N = p^2 q$:

$$\left(\frac{x}{N}\right) = \left(\frac{x}{p}\right)^2 \left(\frac{x}{q}\right)$$

For $N = p^2 q$:

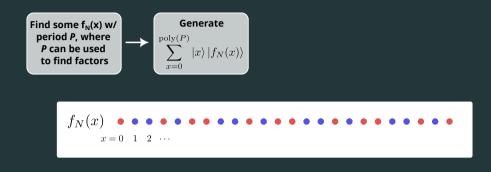
$$\left(\frac{x}{N}\right) = \left(\frac{x}{p}\right)^2 \left(\frac{x}{q}\right) = \left(\frac{x}{q}\right)$$

For $N = p^2 q$:

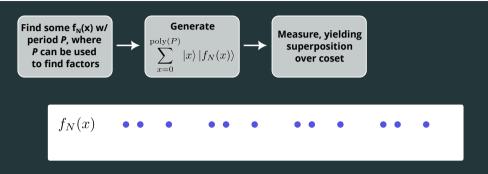
$$\left(\frac{x}{N}\right) = \left(\frac{x}{p}\right)^2 \left(\frac{x}{q}\right) = \left(\frac{x}{q}\right)$$

Period is *q*—exactly what we need!!

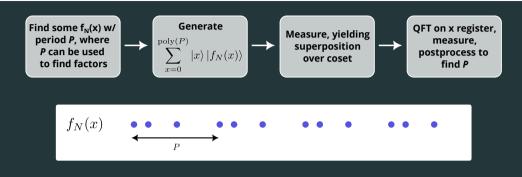
Function:
$$f_N(x) = \left(\frac{x}{N}\right)$$
 Period: $P = q$



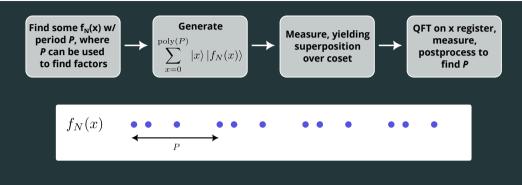
Function:
$$f_N(x) = \left(\frac{x}{N}\right)$$
 Period: $P = q$



Function:
$$f_N(x) = \left(\frac{x}{N}\right)$$
 Period: $P = q$



Function:
$$f_N(x) = \left(\frac{x}{N}\right)$$
 Period: $P = q$



Jacobi factoring, for $N = p^2 q$:

Function:
$$f_N(x) = \left(\frac{x}{N}\right)$$
 Period: $P = q$

Is this going to actually work?

Quantum squarefree decomposition $N \rightarrow P^2 Q$ via Jacobi symbol was known in the literature a decade ago!

Quantum squarefree decomposition $N \rightarrow P^2 Q$ via Jacobi symbol was known in the literature a decade ago!

Their results:

- Period finding yields Q exactly if we take a superposition $x \in [0, N-1]$
- Jacobi symbol can be computed efficiently via standard circuits

Quantum squarefree decomposition $N \rightarrow P^2 Q$ via Jacobi symbol was known in the literature a decade ago!

Our contributions:

- Period finding yields Q exactly if we take a superposition $x \in [0, N-1]$
 - With superposition only to poly(Q), algorithm still succeeds w.h.p.
- Jacobi symbol can be computed efficiently via standard circuits

Quantum squarefree decomposition $N \rightarrow P^2 Q$ via Jacobi symbol was known in the literature a decade ago!

Our contributions:

- Period finding yields Q exactly if we take a superposition $x \in [0, N-1]$
 - With superposition only to poly(Q), algorithm still succeeds w.h.p.
- · Jacobi symbol can be computed efficiently via standard circuits
 - When quantum input is small, extremely efficient quantum circuits exist!

Goal: Compute $\left(\frac{x}{N}\right)$

Goal: Compute $\left(\frac{x}{N}\right)$

$$\left(\frac{a}{b}\right) \in \{-1,0,1\}\tag{1}$$

Goal: Compute $|x\rangle \rightarrow \overline{\left(\frac{x}{N}\right)|x\rangle}$

$$\left(\frac{a}{b}\right)\widetilde{\in}\{-1,1\}\tag{1}$$

Goal: Compute $|x\rangle \rightarrow \overline{\left(\frac{x}{N}\right)|x\rangle}$

$$\left(\frac{a}{b}\right)\widetilde{\in}\{-1,1\}\tag{1}$$

Recall: N is classical, n bits; $|x\rangle$ is quantum, m qubits—and potentially $m \ll n$.

Goal: Compute $|x\rangle \rightarrow \left(\frac{x}{N}\right)|x\rangle$

$$\left(\frac{a}{b}\right) \widetilde{\in} \{-1, 1\} \tag{1}$$

Recall: N is classical, n bits; $|x\rangle$ is quantum, m qubits—and potentially $m \ll n$.

The "big" input is entirely classical. Can we implement this circuit using only O(m) qubits?

Goal: Compute $|x\rangle \rightarrow \left(\frac{x}{N}\right)|x\rangle$

$$\left(\frac{a}{b}\right)\widetilde{\in}\{-1,1\}\tag{1}$$

Recall: N is classical, n bits; $|x\rangle$ is quantum, m qubits—and potentially $m \ll n$.

The "big" input is entirely classical. Can we implement this circuit using only O(m) qubits?

Yes!

Goal: Compute $|x\rangle \rightarrow \left(\frac{x}{N}\right)|x\rangle$; N classical

Goal: Compute $|x\rangle \rightarrow \left(\frac{x}{N}\right)|x\rangle$; *N* classical

Some identities:

$$\begin{pmatrix} \frac{a}{b} \end{pmatrix} = \left(\frac{a \mod b}{b} \right)$$
$$\begin{pmatrix} \frac{a}{b} \end{pmatrix} = (-1)^{f(a,b)} \left(\frac{b}{a} \right)$$

Goal: Compute $|x\rangle \rightarrow \left(\frac{x}{N}\right)|x\rangle$; N classical

Some identities:

$$\begin{pmatrix} \frac{a}{b} \end{pmatrix} = \left(\frac{a \mod b}{b} \right)$$
$$\begin{pmatrix} \frac{a}{b} \end{pmatrix} = (-1)^{f(a,b)} \left(\frac{b}{a} \right)$$

Jacobi symbol ⇔ Greatest common divisor

Jacobi symbol ⇔ Greatest common divisor

Classic GCD algorithms: (let b < a)

Jacobi symbol ⇔ Greatest common divisor

Classic GCD algorithms: (let b < a)

Euclidean algorithm Euclid, Greece, 2000 years ago

Iterate:

 $gcd(a, b) \rightarrow gcd(b, a \mod b)$

Jacobi symbol ⇔ Greatest common divisor

Classic GCD algorithms: (let b < a)

Euclidean algorithm Euclid, Greece, 2000 years ago

Iterate:

 $gcd(a, b) \rightarrow gcd(b, a \mod b)$

Binary GCD Fangtian, China, 2000 years ago

> Suppose *a*, *b* odd Iterate:

 $gcd(a,b) \rightarrow gcd(b,(a-b)/2^k)$

Jacobi symbol ⇔ Greatest common divisor

Classic GCD algorithms: (let b < a)

Euclidean algorithm Euclid, Greece, 2000 years ago

Iterate:

 $gcd(a, b) \rightarrow gcd(b, a \mod b)$

Binary GCD Fangtian, China, 2000 years ago

> Suppose *a*, *b* odd Iterate:

 $gcd(a,b) \rightarrow gcd(b,(a-b)/2^k)$

Both seem to require at least O(n) qubits, and not reversible...

Result: Quantum circuit for $|x\rangle \rightarrow \left(\frac{x}{N}\right) |x\rangle$, with qubit count indepedent of N

Result: Quantum circuit for $|x\rangle \rightarrow \left(\frac{x}{N}\right)|x\rangle$, with qubit count indepedent of N

Key identities:

$$\begin{pmatrix} \frac{a}{b} \end{pmatrix} = \left(\frac{a - kb}{b} \right) \quad \forall k$$
$$\begin{pmatrix} \frac{a}{b} \end{pmatrix} = (-1)^{f(\ell)} \left(\frac{a'}{b} \right) \quad \text{for } \ell \text{ s.t. } a' = a/2^{\ell} \text{ is odd}$$

Result: Quantum circuit for $|x\rangle \rightarrow \left(\frac{x}{N}\right)|x\rangle$, with qubit count indepedent of N

Key identities:

$$\begin{pmatrix} \frac{a}{b} \end{pmatrix} = \left(\frac{a - kb}{b} \right) \quad \forall k$$
$$\begin{pmatrix} \frac{a}{b} \end{pmatrix} = (-1)^{f(\ell)} \left(\frac{a'}{b} \right) \quad \text{for } \ell \text{ s.t. } a' = a/2^{\ell} \text{ is odd}$$

Idea: For *n*-bit *N* and *m*-bit *x*, find N' = kx s.t. only leading *m* bits of N - N' are nonzero

Idea: For *n*-bit *N* and *m*-bit *x*, find N' = kx s.t. only leading *m* bits of N - N' are nonzero

Overall plan:

 $\left(\frac{x}{N}\right)$

Idea: For *n*-bit *N* and *m*-bit *x*, find N' = kx s.t. only leading *m* bits of N - N' are nonzero

Overall plan:

 $\left| \left(\frac{x}{N} \right) \right| \to \left(\frac{N}{x} \right)$

Idea: For *n*-bit *N* and *m*-bit *x*, find N' = kx s.t. only leading *m* bits of N - N' are nonzero

Overall plan:

$$\left(\frac{x}{N}\right) \rightarrow \left(\frac{N}{x}\right) \rightarrow \left(\frac{N-kx}{x}\right)$$

Idea: For *n*-bit *N* and *m*-bit *x*, find N' = kx s.t. only leading *m* bits of N - N' are nonzero

Overall plan:

$$\left(\frac{x}{N}\right) \rightarrow \left(\frac{N}{x}\right) \rightarrow \left(\frac{N-kx}{x}\right) \rightarrow \left(\frac{(N-kx)/2^{n-m}}{x}\right)$$

Idea: For *n*-bit *N* and *m*-bit *x*, find N' = kx s.t. only leading *m* bits of N - N' are nonzero

Overall plan:

$$\left(\frac{x}{N}\right) \rightarrow \left(\frac{N}{x}\right) \rightarrow \left(\frac{N-kx}{x}\right) \rightarrow \left(\frac{(N-kx)/2^{n-m}}{x}\right)$$

Last value has two *m*-bit inputs; cost is independent of *N* with standard circuits.

Idea: For *n*-bit *N* and *m*-bit *x*, find N' = kx s.t. only leading *m* bits of N - N' are nonzero

Overall plan:

$$\left(\frac{x}{N}\right) \rightarrow \left(\frac{N}{x}\right) \rightarrow \left(\frac{N-kx}{x}\right) \rightarrow \left(\frac{(N-kx)/2^{n-m}}{x}\right)$$

Last value has two *m*-bit inputs; cost is independent of *N* with standard circuits.

$$|x\rangle = |1 0 0 1 0 1 1\rangle$$

N = 1 1 0 0 1 1 0 1 0 1 0 1 1
|N'\rangle = |0 0 0 0 0 0 0 0 0 0

$$|x\rangle = |1 0 0 1 0 1 1\rangle$$

N = 1 1 0 0 1 1 0 1 0 1 0 1 1
|N'\rangle = |0 1 0 0 1 0 1\rangle

$$|x\rangle = |1 0 0 1 0 1 1\rangle$$

N = 1 1 0 0 1 1 0 1 0 1 0 1 1
|N'\rangle = |0 1 0 0 1 0 1 1

$$|x\rangle = |1 0 0 1 0 1 1\rangle$$

$$N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1$$

$$|N'\rangle = |0 1 0 0 1 0 1 0 1\rangle$$

$$|c\rangle = |0\rangle$$

$$|x\rangle = |1 0 0 1 0 1 1\rangle$$

N = 1 1 0 0 1 1 0 1 0 1 0 1 1
|N'\rangle = |0 1 0 0 1 0 1\rangle

$$|x\rangle = |1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1\rangle$$

N = 1 1 0 0 1 1 0 1 0 1 1
|N'\rangle = |0 0 1 0 0 1 0 1 0 1 1

$$|x\rangle = |1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1\rangle$$

N = 1 1 0 0 1 1 0 1 0 1 0 1 1
|N'\rangle = |0 0 0 1 0 0 1 0 1 1

$$|x\rangle = |1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1\rangle$$

N = 1 1 0 0 1 1 0 1 0 1 0 1 1
|N'\rangle = |1 0 1 0 1 0 1 0 0 0 1 1

$$| \times \rangle = | 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \rangle$$

N = 1 1 0 0 1 1 0 1 0 1 0 1 1
|N' >= | 0 1 0 1 0 1 0 1 0 0 1 1

Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

$|x\rangle = |1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1\rangle$ N = 1 1 0 0 1 1 0 1 0 1 0 1 1 |N'\rangle = |1 1 1 0 1 0 1 0 1\rangle 0 0 1 1

Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

 $| x \rangle = | 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \rangle$ N = 1 1 0 0 1 1 0 1 0 1 0 1 1 |N' >= | 0 1 1 1 0 1 0 1 0 1 1 0 1 1

$$|\times\rangle = |1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1\rangle$$

N = 1 1 0 0 1 1 0 1 0 1 0 1 1
$$|N'\rangle = |0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1\rangle 0 \ 1 \ 0 \ 0 \ 1 \ 1$$

$$|\times\rangle = |1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1\rangle$$

N = 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1
$$|N'\rangle = |0 \ 0 \ 0 \ 1 \ 1 \ 0\rangle 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1$$

Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

Gate count: O(nm).

Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

$$|x\rangle = |1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1\rangle$$

N = 1 1 0 0 1 1 0 1 0 1 0 1 1 1
|N'\rangle = |0 0 0 1 1 1 0 1 0 1 0 0 1 1

Gate count: O(nm). We can do better!

Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

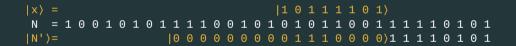
Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

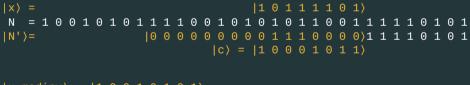
Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

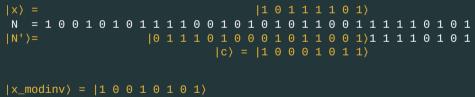


Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$



```
|x_modinv> = |1 0 0 1 0 1 0 1>
|1/x> = |1 0 1 0 1 1 0 1 0>
```

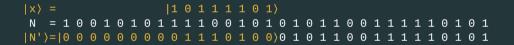
Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

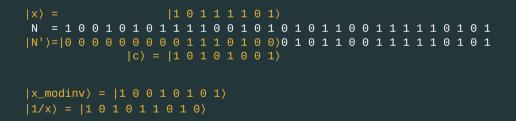


 $|1/x\rangle = |1 0 1 0 1 1 0 1 0\rangle$

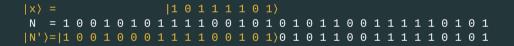
Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

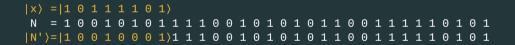


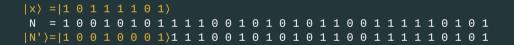


Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$



Goal #2: Circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$





Result: Fast circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

Suppose t-bit multiplication costs $G_M(t)$ gates, $D_M(t)$ depth, $S_M(t)$ qubits.

Circuit cost:

Gates: $\mathcal{O}(\frac{n}{m} \cdot G_M(m))$

Result: Fast circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

Suppose t-bit multiplication costs $G_M(t)$ gates, $D_M(t)$ depth, $S_M(t)$ qubits.

Circuit cost:

Gates: $\mathcal{O}(\frac{n}{m} \cdot G_M(m))$ Depth: $\mathcal{O}(\frac{n}{m} \cdot D_M(m))$

Result: Fast circuit for $|x\rangle |0^m\rangle \rightarrow |x\rangle |N'\rangle$

Suppose t-bit multiplication costs $G_M(t)$ gates, $D_M(t)$ depth, $S_M(t)$ qubits.

Circuit cost:

Gates: $\mathcal{O}(\frac{n}{m} \cdot G_M(m))$ Depth: $\mathcal{O}(\frac{n}{m} \cdot D_M(m))$ Space: $\mathcal{O}(S_M(m))$

Overall plan:

$$\left(\frac{x}{N}\right) \rightarrow \left(\frac{N}{x}\right) \rightarrow \left(\frac{N-kx}{x}\right) \rightarrow \left(\frac{(N-kx)/2^{n-m}}{x}\right)$$

Putting it all together: asymptotic costs

Main result: Circuit for factoring *n*-bit integers $N = p^2 q$, with $q < 2^m$

Main result: Circuit for factoring *n*-bit integers $N = p^2 q$, with $q < 2^m$

Schoolbook mult. + standard GCD:

Gates: $\mathcal{O}(nm)$ Depth: $\mathcal{O}(n)$ Space: $\mathcal{O}(m)$

Main result: Circuit for factoring *n*-bit integers $N = p^2 q$, with $q < 2^m$

Schoolbook mult. + standard GCD:

Gates: $\mathcal{O}(nm)$ Depth: $\mathcal{O}(n)$ Space: $\mathcal{O}(m)$ Fast mult. + fast GCD:

Gates: $\mathcal{O}(n \log m)$ Depth: $\widetilde{\mathcal{O}}(n/m + m)$ Space: $\widetilde{\mathcal{O}}(m)$

[GDKM, Yao; arXiv:2403.18006] New quantum multiplication circuit:

- Gates: $\mathcal{O}_{\epsilon}(t^{1+\epsilon})$
- Ancillas: zero!

[GDKM, Yao; arXiv:2403.18006] New quantum multiplication circuit:

- Gates: $\mathcal{O}_{\epsilon}(t^{1+\epsilon})$
- Ancillas: zero!

[GDKM, Gidney, Chuang; in prep.] **Parallel version of that circuit:**

- Depth: $\mathcal{O}_{\epsilon}(t^{\epsilon})$
- Ancillas: o(t)

[GDKM, Yao; arXiv:2403.18006] New quantum multiplication circuit:

- Gates: $\mathcal{O}_{\epsilon}(t^{1+\epsilon})$
- Ancillas: zero!

[GDKM, Gidney, Chuang; in prep.] Parallel version of that circuit:

- Depth: $\mathcal{O}_{\epsilon}(t^{\epsilon})$
- Ancillas: o(t)

This mult. + standard GCD:

Gates: $\mathcal{O}_{\epsilon}(nm^{\epsilon} + m^2)$ Depth: $\mathcal{O}_{\epsilon}((n/m)^{1+\epsilon} + m)$ Space: $\mathcal{O}(m)$

Putting it all together: asymptotic costs

Main result: Circuit for factoring *n*-bit integers $N = p^2 q$, with $q < 2^m$

Schoolbook mult. + standard GCD:

Gates: O(nm)Depth: O(n + m)Space: O(m) Fast mult. + fast GCD:

Gates: $\mathcal{O}(n \log m)$ Depth: $\widetilde{\mathcal{O}}(n/m + m)$ Space: $\widetilde{\mathcal{O}}(m)$

What should we set *m* to?

What integers should we apply it to?

Classical factoring: for integers $N = p^2 q$, with $n = \log N$ and $m = \log q$

General Number Field Sieve:

Used for RSA integers

Costs roughly $\exp\left(\mathcal{O}(\sqrt[3]{n})\right)$

Lenstra ECM/Mulder:

Used for integers with small factors

Costs roughly $\exp(\mathcal{O}(\sqrt{m}))$

What integers should we apply it to?

Classical factoring: for integers $N = p^2 q$, with $n = \log N$ and $m = \log q$

General Number Field Sieve:

Used for RSA integers

Costs roughly $\exp\left(\mathcal{O}(\sqrt[3]{n})\right)$

Lenstra ECM/Mulder:

Used for integers with small factors

Costs roughly $\exp(\mathcal{O}(\sqrt{m}))$

Set $m = O(n^{2/3})$ for the *cheapest* quantum circuit classically as hard as RSA

Putting it all together: asymptotic costs

Main result: Circuit for factoring *n*-bit integers $N = p^2 q$, with $\log q = m = O(n^{2/3})$

Schoolbook mult. + standard GCD:

Gates: $\mathcal{O}(n^{5/3})$ Depth: $\mathcal{O}(n)$ Space: $\mathcal{O}(n^{2/3})$ Fast mult. + fast GCD:

Gates: $\widetilde{\mathcal{O}}(n)$ Depth: $\widetilde{\mathcal{O}}(n^{2/3})$ Space: $\widetilde{\mathcal{O}}(n^{2/3})$

Putting it all together: asymptotic costs

Main result: Circuit for factoring *n*-bit integers $N = p^2 q$, with $\log q = m = O(n^{2/3})$

Schoolbook mult. + standard GCD:

Gates: $\mathcal{O}(n^{5/3})$ Depth: $\mathcal{O}(n)$ Space: $\mathcal{O}(n^{2/3})$ Fast mult. + fast GCD:

Gates: $\widetilde{\mathcal{O}}(n)$ Depth: $\widetilde{\mathcal{O}}(n^{2/3})$ Space: $\widetilde{\mathcal{O}}(n^{2/3})$

Space 2m + o(m) seems achievable. Classically-hard factoring with a few hundred qubits?

Factoring certain *n*-bit integers $N = p^2 q$ in:

- Gates: $\widetilde{\mathcal{O}}(n)$
- Space and depth: $\widetilde{\mathcal{O}}(n^{2/3})$

Factoring certain *n*-bit integers $N = p^2 q$ in:

- Gates: $\widetilde{\mathcal{O}}(n)$
- Space and depth: $\widetilde{\mathcal{O}}(n^{2/3})$

Factoring certain *n*-bit integers $N = p^2 q$ in:

- Gates: $\widetilde{\mathcal{O}}(n)$
- Space and depth: $\widetilde{\mathcal{O}}(n^{2/3})$

Open questions/directions:

• Practical classical hardness—what should *m* be, concretely?

Factoring certain *n*-bit integers $N = p^2 q$ in:

- Gates: $\widetilde{\mathcal{O}}(n)$
- Space and depth: $\overline{\widetilde{\mathcal{O}}(n^{2/3})}$

- Practical classical hardness—what should *m* be, concretely?
- Optimization of concrete circuits

Factoring certain *n*-bit integers $N = p^2 q$ in:

- Gates: $\widetilde{\mathcal{O}}(n)$
- Space and depth: $\overline{\widetilde{\mathcal{O}}(n^{2/3})}$

- Practical classical hardness—what should *m* be, concretely?
- Optimization of concrete circuits
- Can this be generalized?

Factoring certain *n*-bit integers $N = p^2 q$ in:

- Gates: $\widetilde{\mathcal{O}}(n)$
- Space and depth: $\widetilde{\mathcal{O}}(n^{2/3})$

- Practical classical hardness—what should *m* be, concretely?
- Optimization of concrete circuits
- Can this be generalized?
 - \cdot Currently: completely factor any integer with **distinct exponents** in prime factorization

Factoring certain *n*-bit integers $N = p^2 q$ in:

- Gates: $\widetilde{\mathcal{O}}(n)$
- Space and depth: $\widetilde{\mathcal{O}}(n^{2/3})$

- Practical classical hardness—what should *m* be, concretely?
- Optimization of concrete circuits
- Can this be generalized?
 - Currently: completely factor any integer with distinct exponents in prime factorization
 - Further generalizations? RSA??

Questions?

Greg Kahanamoku-Meyer

gkm@mit.edu https://gregkm.me/

Seyoon Ragavan

Vinod Vaikuntanathan

Katherine van Kirk