
The Jacobi Factoring Circuit

Gregory D. Kahanamoku-Meyer*, Seyoon Ragavan*,

Vinod Vaikuntanathan*, Katherine van Kirk†

November 19, 2024

Classically-hard factoring in sublinear quantum space and depth

*MIT, †Harvard

Verifiable quantum advantage

10100111100
11010110011
11101100100
10011000011

How can a single black-box device prove its quantum capability
to a skeptical classical verifier?

2

Verifiable quantum advantage

10100111100
11010110011
11101100100
10011000011

Ideal protocol:

• Provably classically hard, reducible to
an established problem

• Polynomial-time classical verification
• Small circuits in terms of qubits, gates,
and depth

How can a single black-box device prove its quantum capability
to a skeptical classical verifier?

3

Verifiable quantum advantage

10100111100
11010110011
11101100100
10011000011

Ideal protocol:

• Provably classically hard, reducible to
an established problem

• Polynomial-time classical verification
• Small circuits in terms of qubits, gates,
and depth

How can a single black-box device prove its quantum capability
to a skeptical classical verifier?

3

Verifiable quantum advantage

10100111100
11010110011
11101100100
10011000011

Ideal protocol:

• Provably classically hard, reducible to
an established problem

• Polynomial-time classical verification

• Small circuits in terms of qubits, gates,
and depth

How can a single black-box device prove its quantum capability
to a skeptical classical verifier?

3

Verifiable quantum advantage

10100111100
11010110011
11101100100
10011000011

Ideal protocol:

• Provably classically hard, reducible to
an established problem

• Polynomial-time classical verification
• Small circuits in terms of qubits, gates,
and depth

How can a single black-box device prove its quantum capability
to a skeptical classical verifier?

3

Verifiable quantum advantage via factoring

Protocol: Pick primes p,q, ask the quantum device to factor n-bit N = pq.

Gates: Õ(n2) Depth: Õ(n) Qubits: Õ(n)

4

Verifiable quantum advantage via factoring

Protocol: Pick primes p,q, ask the quantum device to factor n-bit N = pq.

Gates: Õ(n2) Depth: Õ(n) Qubits: Õ(n)

4

Verifiable quantum advantage via factoring

Protocol: Pick primes p,q, ask the quantum device to factor n-bit N = pq.

Gates: Õ(n3/2) Depth: Õ(n1/2) Qubits: Õ(n)∗

∗ with the optimizations of Ragavan and Vaikuntanathan [arXiv:2310.00899]

5

Verifiable quantum advantage via factoring

Protocol:
3-round interactive protocol; quantum device evaluates x2 mod N for n-bit N = pq

Gates: Õ(n) Depth: O(polylog n) Qubits: Õ(n)

... note it doesn’t actually factor the number!

6

Verifiable quantum advantage via factoring

Protocol:
3-round interactive protocol; quantum device evaluates x2 mod N for n-bit N = pq

Gates: Õ(n) Depth: O(polylog n) Qubits: Õ(n)

... note it doesn’t actually factor the number!

6

Verifiable quantum advantage via factoring

Algorithm Gates Depth Qubits

Shor Õ(n2) Õ(n) Õ(n)

Regev + RV23 Õ(n3/2) Õ(n1/2) Õ(n)

x2 mod N Õ(n) Õ(n0) Õ(n)
All algorithms implemented with fast, low-depth multipliers.

Tildes indicate omitted polylog factors.

“Factoring numbers of practical significance requires far more qubits than available in the near
future.” –Wikipedia: Shor’s algorithm

“Cool but that’s still too many qubits” –every experimentalist when I talk about x2 mod N

7

Verifiable quantum advantage via factoring

Algorithm Gates Depth Qubits

Shor Õ(n2) Õ(n) Õ(n)

Regev + RV23 Õ(n3/2) Õ(n1/2) Õ(n)

x2 mod N Õ(n) Õ(n0) Õ(n)
All algorithms implemented with fast, low-depth multipliers.

Tildes indicate omitted polylog factors.

“Factoring numbers of practical significance requires far more qubits than available in the near
future.” –Wikipedia: Shor’s algorithm

“Cool but that’s still too many qubits” –every experimentalist when I talk about x2 mod N

7

Verifiable quantum advantage via factoring

Algorithm Gates Depth Qubits

Shor Õ(n2) Õ(n) Õ(n)

Regev + RV23 Õ(n3/2) Õ(n1/2) Õ(n)

x2 mod N Õ(n) Õ(n0) Õ(n)
All algorithms implemented with fast, low-depth multipliers.

Tildes indicate omitted polylog factors.

“Factoring numbers of practical significance requires far more qubits than available in the near
future.” –Wikipedia: Shor’s algorithm

“Cool but that’s still too many qubits” –every experimentalist when I talk about x2 mod N

7

Verifiable quantum advantage via factoring

For n-bit numbers of the form N = pq:

Algorithm Gates Depth Qubits

Shor Õ(n2) Õ(n) Õ(n)

Regev + RV23 Õ(n3/2) Õ(n1/2) Õ(n)

x2 mod N Õ(n) Õ(n0) Õ(n)

For n-bit numbers of the form N = p2q, with q < 2m:

Algorithm Gates Depth Qubits

This work Õ(n) Õ(n/m+m) Õ(m)

Space and depth proportional to the length of the factor!

8

Verifiable quantum advantage via factoring

For n-bit numbers of the form N = pq:

Algorithm Gates Depth Qubits

Shor Õ(n2) Õ(n) Õ(n)

Regev + RV23 Õ(n3/2) Õ(n1/2) Õ(n)

x2 mod N Õ(n) Õ(n0) Õ(n)

For n-bit numbers of the form N = p2q, with q < 2m:

Algorithm Gates Depth Qubits

This work Õ(n) Õ(n/m+m) Õ(m)

Space and depth proportional to the length of the factor!

8

Why do we need O(n) qubits?

Find some fN(x) w/
period P, where
P can be used
to find factors

Shor’s algorithm: Function: fN(x) = ax mod N Period: P = ordN(a) = O(N)

Could we find a function with smaller period?

9

Why do we need O(n) qubits?

Find some fN(x) w/
period P, where
P can be used
to find factors

Generate

Shor’s algorithm: Function: fN(x) = ax mod N Period: P = ordN(a) = O(N)

Could we find a function with smaller period?

9

Why do we need O(n) qubits?

Find some fN(x) w/
period P, where
P can be used
to find factors

Generate
Measure, yielding

superposition
over coset

Shor’s algorithm: Function: fN(x) = ax mod N Period: P = ordN(a) = O(N)

Could we find a function with smaller period?

9

Why do we need O(n) qubits?

Find some fN(x) w/
period P, where
P can be used
to find factors

Generate
Measure, yielding

superposition
over coset

QFT on x register,
measure,

postprocess to
find P

Shor’s algorithm: Function: fN(x) = ax mod N Period: P = ordN(a) = O(N)

Could we find a function with smaller period?

9

Why do we need O(n) qubits?

Find some fN(x) w/
period P, where
P can be used
to find factors

Generate
Measure, yielding

superposition
over coset

QFT on x register,
measure,

postprocess to
find P

Shor’s algorithm: Function: fN(x) = ax mod N Period: P = ordN(a) = O(N)

Could we find a function with smaller period?

9

Why do we need O(n) qubits?

Find some fN(x) w/
period P, where
P can be used
to find factors

Generate
Measure, yielding

superposition
over coset

QFT on x register,
measure,

postprocess to
find P

Shor’s algorithm: Function: fN(x) = ax mod N Period: P = ordN(a) = O(N)

Could we find a function with smaller period?

9

Some number theory

Legendre symbol

For a prime p:

(
x
p

)
=

0 if x ≡ 0 (mod p)
1 if ∃ w s.t. w2 ≡ x (mod p)
−1 otherwise

Legendre symbol is 1) efficient to compute given x and p, 2) periodic with period p

10

Some number theory

Legendre symbol

For a prime p:

(
x
p

)
=

0 if x ≡ 0 (mod p)
1 if ∃ w s.t. w2 ≡ x (mod p)
−1 otherwise

Legendre symbol is 1) efficient to compute given x and p, 2) periodic with period p

10

Some number theory

Legendre symbol

For a prime p:

(
x
p

)
=

0 if x ≡ 0 (mod p)
1 if ∃ w s.t. w2 ≡ x (mod p)
−1 otherwise

Legendre symbol is 1) efficient to compute given x and p, 2) periodic with period p

10

Some number theory

Jacobi symbol

For a composite number N =
∏

i pi:

(x
N

)
=

∏
i

(
x
pi

)

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period...?

11

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period...?

For N = pq:

(x
N

)
=

(
x
p

) (
x
q

)

Period is N—not helpful for factoring!

12

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period...?

For N = pq:

(x
N

)
=

(
x
p

) (
x
q

)
Period is N—not helpful for factoring!

12

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period...?

For N = p2q:

(x
N

)
=

(
x
p

)2 (
x
q

)

=

(
x
q

)

Period is q—exactly what we need!!

13

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period...?

For N = p2q:

(x
N

)
=

(
x
p

)2 (
x
q

)
=

(
x
q

)

Period is q—exactly what we need!!

13

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period...?

For N = p2q:

(x
N

)
=

(
x
p

)2 (
x
q

)
=

(
x
q

)

Period is q—exactly what we need!!

13

Factoring with the Jacobi symbol

Find some fN(x) w/
period P, where
P can be used
to find factors

Jacobi factoring, for N = p2q: Function: fN(x) =
(x
N

)
Period: P = q

Is this going to actually work?

14

Factoring with the Jacobi symbol

Find some fN(x) w/
period P, where
P can be used
to find factors

Generate

Jacobi factoring, for N = p2q: Function: fN(x) =
(x
N

)
Period: P = q

Is this going to actually work?

14

Factoring with the Jacobi symbol

Find some fN(x) w/
period P, where
P can be used
to find factors

Generate
Measure, yielding

superposition
over coset

Jacobi factoring, for N = p2q: Function: fN(x) =
(x
N

)
Period: P = q

Is this going to actually work?

14

Factoring with the Jacobi symbol

Find some fN(x) w/
period P, where
P can be used
to find factors

Generate
Measure, yielding

superposition
over coset

QFT on x register,
measure,

postprocess to
find P

Jacobi factoring, for N = p2q: Function: fN(x) =
(x
N

)
Period: P = q

Is this going to actually work?

14

Factoring with the Jacobi symbol

Find some fN(x) w/
period P, where
P can be used
to find factors

Generate
Measure, yielding

superposition
over coset

QFT on x register,
measure,

postprocess to
find P

Jacobi factoring, for N = p2q: Function: fN(x) =
(x
N

)
Period: P = q

Is this going to actually work?

14

Li, Peng, Du, Suter ’12

LDPS. “An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Nature Scientific Reports, 2012.

Quantum squarefree decomposition N → P2Q via Jacobi symbol
was known in the literature a decade ago!

Their results:

• Period finding yields Q exactly if we take a superposition x ∈ [0,N− 1]

• With superposition only to poly(Q), algorithm still succeeds w.h.p.

• Jacobi symbol can be computed efficiently via standard circuits

• When quantum input is small, extremely efficient quantum circuits exist!

15

Li, Peng, Du, Suter ’12

LDPS. “An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Nature Scientific Reports, 2012.

Quantum squarefree decomposition N → P2Q via Jacobi symbol
was known in the literature a decade ago!

Their results:

• Period finding yields Q exactly if we take a superposition x ∈ [0,N− 1]

• With superposition only to poly(Q), algorithm still succeeds w.h.p.

• Jacobi symbol can be computed efficiently via standard circuits

• When quantum input is small, extremely efficient quantum circuits exist!

15

Li, Peng, Du, Suter ’12

LDPS. “An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Nature Scientific Reports, 2012.

Quantum squarefree decomposition N → P2Q via Jacobi symbol
was known in the literature a decade ago!

Our contributions:

• Period finding yields Q exactly if we take a superposition x ∈ [0,N− 1]
• With superposition only to poly(Q), algorithm still succeeds w.h.p.

• Jacobi symbol can be computed efficiently via standard circuits

• When quantum input is small, extremely efficient quantum circuits exist!

15

Li, Peng, Du, Suter ’12

LDPS. “An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Nature Scientific Reports, 2012.

Quantum squarefree decomposition N → P2Q via Jacobi symbol
was known in the literature a decade ago!

Our contributions:

• Period finding yields Q exactly if we take a superposition x ∈ [0,N− 1]
• With superposition only to poly(Q), algorithm still succeeds w.h.p.

• Jacobi symbol can be computed efficiently via standard circuits
• When quantum input is small, extremely efficient quantum circuits exist!

15

Computing the Jacobi symbol

Goal: Compute
(x
N

)

(a
b

)
∈ {−1, 0, 1} (1)

Recall: N is classical, n bits; |x〉 is quantum, m qubits—and potentially m � n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Yes!

16

Computing the Jacobi symbol

Goal: Compute
(x
N

)
(a
b

)
∈ {−1, 0, 1} (1)

Recall: N is classical, n bits; |x〉 is quantum, m qubits—and potentially m � n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Yes!

16

Computing the Jacobi symbol

Goal: Compute |x〉 →
(x
N

)
|x〉

(a
b

)
∈̃{−1, 1} (1)

Recall: N is classical, n bits; |x〉 is quantum, m qubits—and potentially m � n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Yes!

16

Computing the Jacobi symbol

Goal: Compute |x〉 →
(x
N

)
|x〉

(a
b

)
∈̃{−1, 1} (1)

Recall: N is classical, n bits; |x〉 is quantum, m qubits—and potentially m � n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Yes!

16

Computing the Jacobi symbol

Goal: Compute |x〉 →
(x
N

)
|x〉

(a
b

)
∈̃{−1, 1} (1)

Recall: N is classical, n bits; |x〉 is quantum, m qubits—and potentially m � n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Yes!

16

Computing the Jacobi symbol

Goal: Compute |x〉 →
(x
N

)
|x〉

(a
b

)
∈̃{−1, 1} (1)

Recall: N is classical, n bits; |x〉 is quantum, m qubits—and potentially m � n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Yes!
16

Computing the Jacobi symbol

Goal: Compute |x〉 →
(x
N

)
|x〉; N classical

Some identities:

(a
b

)
=

(
a mod b

b

)
(a
b

)
= (−1)f (a,b)

(
b
a

)

Jacobi symbol ⇔ Greatest common divisor

17

Computing the Jacobi symbol

Goal: Compute |x〉 →
(x
N

)
|x〉; N classical

Some identities:

(a
b

)
=

(
a mod b

b

)
(a
b

)
= (−1)f (a,b)

(
b
a

)

Jacobi symbol ⇔ Greatest common divisor

17

Computing the Jacobi symbol

Goal: Compute |x〉 →
(x
N

)
|x〉; N classical

Some identities:

(a
b

)
=

(
a mod b

b

)
(a
b

)
= (−1)f (a,b)

(
b
a

)

Jacobi symbol ⇔ Greatest common divisor

17

Computing the Jacobi symbol

Jacobi symbol ⇔ Greatest common divisor

Classic GCD algorithms: (let b < a)

Euclidean algorithm
Euclid, Greece, 2000 years ago

Iterate:

gcd(a,b) → gcd(b,a mod b)

Binary GCD
Fangtian, China, 2000 years ago

Suppose a, b odd

Iterate:

gcd(a,b) → gcd(b, (a− b)/2k)

Both seem to require at least O(n) qubits, and not reversible...

18

Computing the Jacobi symbol

Jacobi symbol ⇔ Greatest common divisor

Classic GCD algorithms: (let b < a)

Euclidean algorithm
Euclid, Greece, 2000 years ago

Iterate:

gcd(a,b) → gcd(b,a mod b)

Binary GCD
Fangtian, China, 2000 years ago

Suppose a, b odd

Iterate:

gcd(a,b) → gcd(b, (a− b)/2k)

Both seem to require at least O(n) qubits, and not reversible...

18

Computing the Jacobi symbol

Jacobi symbol ⇔ Greatest common divisor

Classic GCD algorithms: (let b < a)

Euclidean algorithm
Euclid, Greece, 2000 years ago

Iterate:

gcd(a,b) → gcd(b,a mod b)

Binary GCD
Fangtian, China, 2000 years ago

Suppose a, b odd

Iterate:

gcd(a,b) → gcd(b, (a− b)/2k)

Both seem to require at least O(n) qubits, and not reversible...

18

Computing the Jacobi symbol

Jacobi symbol ⇔ Greatest common divisor

Classic GCD algorithms: (let b < a)

Euclidean algorithm
Euclid, Greece, 2000 years ago

Iterate:

gcd(a,b) → gcd(b,a mod b)

Binary GCD
Fangtian, China, 2000 years ago

Suppose a, b odd

Iterate:

gcd(a,b) → gcd(b, (a− b)/2k)

Both seem to require at least O(n) qubits, and not reversible...

18

Computing the Jacobi symbol

Result: Quantum circuit for |x〉 →
(x
N

)
|x〉, with qubit count indepedent of N

Key identities:

(a
b

)
=

(
a− kb
b

)
∀ k(a

b

)
= (−1)f (`)

(
a′

b

)
for ` s.t. a′ = a/2` is odd

Idea: For n-bit N and m-bit x,
find N′ = kx s.t. only leading m bits of N− N′ are nonzero

19

Computing the Jacobi symbol

Result: Quantum circuit for |x〉 →
(x
N

)
|x〉, with qubit count indepedent of N

Key identities:

(a
b

)
=

(
a− kb
b

)
∀ k(a

b

)
= (−1)f (`)

(
a′

b

)
for ` s.t. a′ = a/2` is odd

Idea: For n-bit N and m-bit x,
find N′ = kx s.t. only leading m bits of N− N′ are nonzero

19

Computing the Jacobi symbol

Result: Quantum circuit for |x〉 →
(x
N

)
|x〉, with qubit count indepedent of N

Key identities:

(a
b

)
=

(
a− kb
b

)
∀ k(a

b

)
= (−1)f (`)

(
a′

b

)
for ` s.t. a′ = a/2` is odd

Idea: For n-bit N and m-bit x,
find N′ = kx s.t. only leading m bits of N− N′ are nonzero

19

Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N′ = kx s.t. only leading m bits of N− N′ are nonzero

Overall plan:

(x
N

)

→
(
N
x

)
→

(
N− kx
x

)
→

(
(N− kx)/2n−m

x

)

Last value has two m-bit inputs; cost is independent of N with standard circuits.

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

20

Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N′ = kx s.t. only leading m bits of N− N′ are nonzero

Overall plan:

(x
N

)
→

(
N
x

)

→
(
N− kx
x

)
→

(
(N− kx)/2n−m

x

)

Last value has two m-bit inputs; cost is independent of N with standard circuits.

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

20

Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N′ = kx s.t. only leading m bits of N− N′ are nonzero

Overall plan:

(x
N

)
→

(
N
x

)
→

(
N− kx
x

)

→
(
(N− kx)/2n−m

x

)

Last value has two m-bit inputs; cost is independent of N with standard circuits.

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

20

Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N′ = kx s.t. only leading m bits of N− N′ are nonzero

Overall plan:

(x
N

)
→

(
N
x

)
→

(
N− kx
x

)
→

(
(N− kx)/2n−m

x

)

Last value has two m-bit inputs; cost is independent of N with standard circuits.

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

20

Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N′ = kx s.t. only leading m bits of N− N′ are nonzero

Overall plan:

(x
N

)
→

(
N
x

)
→

(
N− kx
x

)
→

(
(N− kx)/2n−m

x

)

Last value has two m-bit inputs; cost is independent of N with standard circuits.

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

20

Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N′ = kx s.t. only leading m bits of N− N′ are nonzero

Overall plan:

(x
N

)
→

(
N
x

)
→

(
N− kx
x

)
→

(
(N− kx)/2n−m

x

)

Last value has two m-bit inputs; cost is independent of N with standard circuits.

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

20

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
|N'⟩= |0 0 0 0 0 0 0⟩

|x⟩ = |1 0 0 1 0 1 1⟩

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
|N'⟩= |0 0 0 0 0 0 0⟩

|x⟩ = |1 0 0 1 0 1 1⟩

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
|N'⟩= |1 0 0 1 0 1 1⟩
 |c⟩=|1⟩

|x⟩ = |1 0 0 1 0 1 1⟩

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
|N'⟩= |1 0 0 1 0 1 1⟩

|x⟩ = |1 0 0 1 0 1 1⟩

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
|N'⟩= |0 1 0 0 1 0 1⟩

|x⟩ = |1 0 0 1 0 1 1⟩

 1

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
|N'⟩= |0 1 0 0 1 0 1⟩

|x⟩ = |1 0 0 1 0 1 1⟩

 1

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
|N'⟩= |0 1 0 0 1 0 1⟩
 |c⟩=|0⟩

|x⟩ = |1 0 0 1 0 1 1⟩

 1

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
|N'⟩= |0 1 0 0 1 0 1⟩

|x⟩ = |1 0 0 1 0 1 1⟩

 1

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
|N'⟩= |0 0 1 0 0 1 0⟩

|x⟩ = |1 0 0 1 0 1 1⟩

 1 1

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
|N'⟩= |0 0 0 1 0 0 1⟩

|x⟩ = |1 0 0 1 0 1 1⟩

 0 1 1

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
 0 1 1|N'⟩= |1 0 1 0 1 0 0⟩

|x⟩ = |1 0 0 1 0 1 1⟩

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
 0 0 1 1|N'⟩= |0 1 0 1 0 1 0⟩

|x⟩ = |1 0 0 1 0 1 1⟩

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
 0 0 1 1|N'⟩= |1 1 1 0 1 0 1⟩

|x⟩ = |1 0 0 1 0 1 1⟩

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
 1 0 0 1 1|N'⟩= |0 1 1 1 0 1 0⟩

|x⟩ = |1 0 0 1 0 1 1⟩

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
 0 1 0 0 1 1|N'⟩= |0 0 1 1 1 0 1⟩

|x⟩ = |1 0 0 1 0 1 1⟩

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
 1 0 1 0 0 1 1|N'⟩=|0 0 0 1 1 1 0⟩

|x⟩ =|1 0 0 1 0 1 1⟩

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
 1 0 1 0 0 1 1|N'⟩=|0 0 0 1 1 1 0⟩

|x⟩ =|1 0 0 1 0 1 1⟩

Gate count: O(nm).

We can do better!

21

Computing the Jacobi symbol

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 1 0 0 1 1 0 1 0 1 0 0 1 1
 1 0 1 0 0 1 1|N'⟩=|0 0 0 1 1 1 0⟩

|x⟩ =|1 0 0 1 0 1 1⟩

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
|N'⟩= |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
|N'⟩= |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
|N'⟩= |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
|N'⟩= |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

 |c⟩ = |0 0 1 1 1 0 1 1⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
|N'⟩= |0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

 |c⟩ = |0 0 1 1 1 0 1 1⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
|N'⟩= |0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
 1 1 1 1 0 1 0 1|N'⟩= |0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
 1 1 1 1 0 1 0 1|N'⟩= |0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
 1 1 1 1 0 1 0 1|N'⟩= |0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

 |c⟩ = |1 0 0 0 1 0 1 1⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
 1 1 1 1 0 1 0 1|N'⟩= |0 1 1 1 0 1 0 0 0 1 0 1 1 0 0 1⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

 |c⟩ = |1 0 0 0 1 0 1 1⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
 1 1 1 1 0 1 0 1|N'⟩= |0 1 1 1 0 1 0 0 0 1 0 1 1 0 0 1⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1|N'⟩=|0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1|N'⟩=|0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

 |c⟩ = |1 0 1 0 1 0 0 1⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1|N'⟩=|1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

 |c⟩ = |1 0 1 0 1 0 0 1⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1|N'⟩=|1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1⟩

|x⟩ = |1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1|N'⟩=|1 0 0 1 0 0 0 1⟩

|x⟩ =|1 0 1 1 1 1 0 1⟩

|x_modinv⟩ = |1 0 0 1 0 1 0 1⟩
|1/x⟩ = |1 0 1 0 1 1 0 1 0⟩

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x〉 |0m〉 → |x〉 |N′〉

N = 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1
 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1|N'⟩=|1 0 0 1 0 0 0 1⟩

|x⟩ =|1 0 1 1 1 1 0 1⟩

22

Computing the Jacobi symbol, fast!

Result: Fast circuit for |x〉 |0m〉 → |x〉 |N′〉

Suppose t-bit multiplication costs GM(t) gates, DM(t) depth, SM(t) qubits.

Circuit cost:

Gates: O(nm · GM(m))

Depth: O(nm · DM(m))

Space: O(SM(m))

23

Computing the Jacobi symbol, fast!

Result: Fast circuit for |x〉 |0m〉 → |x〉 |N′〉

Suppose t-bit multiplication costs GM(t) gates, DM(t) depth, SM(t) qubits.

Circuit cost:

Gates: O(nm · GM(m))

Depth: O(nm · DM(m))

Space: O(SM(m))

23

Computing the Jacobi symbol, fast!

Result: Fast circuit for |x〉 |0m〉 → |x〉 |N′〉

Suppose t-bit multiplication costs GM(t) gates, DM(t) depth, SM(t) qubits.

Circuit cost:

Gates: O(nm · GM(m))

Depth: O(nm · DM(m))

Space: O(SM(m))

23

Computing the Jacobi symbol

Overall plan:

(x
N

)
→

(
N
x

)
→

(
N− kx
x

)
→

(
(N− kx)/2n−m

x

)

24

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p2q, with q < 2m

Schoolbook mult. + standard GCD:

Gates: O(nm)

Depth: O(n)
Space: O(m)

Fast mult. + fast GCD:

Gates: O(n logm)

Depth: Õ(n/m+m)

Space: Õ(m)

25

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p2q, with q < 2m

Schoolbook mult. + standard GCD:

Gates: O(nm)

Depth: O(n)
Space: O(m)

Fast mult. + fast GCD:

Gates: O(n logm)

Depth: Õ(n/m+m)

Space: Õ(m)

25

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p2q, with q < 2m

Schoolbook mult. + standard GCD:

Gates: O(nm)

Depth: O(n)
Space: O(m)

Fast mult. + fast GCD:

Gates: O(n logm)

Depth: Õ(n/m+m)

Space: Õ(m)

25

Aside: fast multiplication in low space

[GDKM, Yao; arXiv:2403.18006]
New quantum multiplication circuit:
• Gates: Oε(t1+ε)

• Ancillas: zero!

[GDKM, Gidney, Chuang; in prep.]
Parallel version of that circuit:
• Depth: Oε(tε)
• Ancillas: o(t)

This mult. + standard GCD:

Gates: Oε(nmε +m2)

Depth: Oε((n/m)1+ε +m)

Space: O(m)

26

Aside: fast multiplication in low space

[GDKM, Yao; arXiv:2403.18006]
New quantum multiplication circuit:
• Gates: Oε(t1+ε)

• Ancillas: zero!

[GDKM, Gidney, Chuang; in prep.]
Parallel version of that circuit:
• Depth: Oε(tε)
• Ancillas: o(t)

This mult. + standard GCD:

Gates: Oε(nmε +m2)

Depth: Oε((n/m)1+ε +m)

Space: O(m)

26

Aside: fast multiplication in low space

[GDKM, Yao; arXiv:2403.18006]
New quantum multiplication circuit:
• Gates: Oε(t1+ε)

• Ancillas: zero!

[GDKM, Gidney, Chuang; in prep.]
Parallel version of that circuit:
• Depth: Oε(tε)
• Ancillas: o(t)

This mult. + standard GCD:

Gates: Oε(nmε +m2)

Depth: Oε((n/m)1+ε +m)

Space: O(m)

26

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p2q, with q < 2m

Schoolbook mult. + standard GCD:

Gates: O(nm)

Depth: O(n+m)

Space: O(m)

Fast mult. + fast GCD:

Gates: O(n logm)

Depth: Õ(n/m+m)

Space: Õ(m)

What should we set m to?

27

What integers should we apply it to?

Classical factoring: for integers N = p2q, with n = logN and m = log q

General Number Field Sieve:
Used for RSA integers

Costs roughly exp (O(3
√
n))

Lenstra ECM/Mulder:
Used for integers with small factors

Costs roughly exp (O(
√
m))

Set m = O(n2/3) for the cheapest quantum circuit classically as hard as RSA

28

What integers should we apply it to?

Classical factoring: for integers N = p2q, with n = logN and m = log q

General Number Field Sieve:
Used for RSA integers

Costs roughly exp (O(3
√
n))

Lenstra ECM/Mulder:
Used for integers with small factors

Costs roughly exp (O(
√
m))

Set m = O(n2/3) for the cheapest quantum circuit classically as hard as RSA

28

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p2q, with log q = m = O(n2/3)

Schoolbook mult. + standard GCD:

Gates: O(n5/3)
Depth: O(n)
Space: O(n2/3)

Fast mult. + fast GCD:

Gates: Õ(n)
Depth: Õ(n2/3)
Space: Õ(n2/3)

Space 2m+ o(m) seems achievable.
Classically-hard factoring with a few hundred qubits?

29

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p2q, with log q = m = O(n2/3)

Schoolbook mult. + standard GCD:

Gates: O(n5/3)
Depth: O(n)
Space: O(n2/3)

Fast mult. + fast GCD:

Gates: Õ(n)
Depth: Õ(n2/3)
Space: Õ(n2/3)

Space 2m+ o(m) seems achievable.
Classically-hard factoring with a few hundred qubits?

29

Summary and open questions

Factoring certain n-bit integers N = p2q in:

• Gates: Õ(n)
• Space and depth: Õ(n2/3)

Open questions/directions:

• Practical classical hardness—what should m be, concretely?
• Optimization of concrete circuits
• Can this be generalized?

• Currently: completely factor any integer with distinct exponents in prime factorization
• Further generalizations? RSA??

30

Summary and open questions

Factoring certain n-bit integers N = p2q in:

• Gates: Õ(n)
• Space and depth: Õ(n2/3)

Open questions/directions:

• Practical classical hardness—what should m be, concretely?
• Optimization of concrete circuits
• Can this be generalized?

• Currently: completely factor any integer with distinct exponents in prime factorization
• Further generalizations? RSA??

30

Summary and open questions

Factoring certain n-bit integers N = p2q in:

• Gates: Õ(n)
• Space and depth: Õ(n2/3)

Open questions/directions:

• Practical classical hardness—what should m be, concretely?

• Optimization of concrete circuits
• Can this be generalized?

• Currently: completely factor any integer with distinct exponents in prime factorization
• Further generalizations? RSA??

30

Summary and open questions

Factoring certain n-bit integers N = p2q in:

• Gates: Õ(n)
• Space and depth: Õ(n2/3)

Open questions/directions:

• Practical classical hardness—what should m be, concretely?
• Optimization of concrete circuits

• Can this be generalized?

• Currently: completely factor any integer with distinct exponents in prime factorization
• Further generalizations? RSA??

30

Summary and open questions

Factoring certain n-bit integers N = p2q in:

• Gates: Õ(n)
• Space and depth: Õ(n2/3)

Open questions/directions:

• Practical classical hardness—what should m be, concretely?
• Optimization of concrete circuits
• Can this be generalized?

• Currently: completely factor any integer with distinct exponents in prime factorization
• Further generalizations? RSA??

30

Summary and open questions

Factoring certain n-bit integers N = p2q in:

• Gates: Õ(n)
• Space and depth: Õ(n2/3)

Open questions/directions:

• Practical classical hardness—what should m be, concretely?
• Optimization of concrete circuits
• Can this be generalized?

• Currently: completely factor any integer with distinct exponents in prime factorization

• Further generalizations? RSA??

30

Summary and open questions

Factoring certain n-bit integers N = p2q in:

• Gates: Õ(n)
• Space and depth: Õ(n2/3)

Open questions/directions:

• Practical classical hardness—what should m be, concretely?
• Optimization of concrete circuits
• Can this be generalized?

• Currently: completely factor any integer with distinct exponents in prime factorization
• Further generalizations? RSA??

30

Questions?

Seyoon

Ragavan
Katherine

van Kirk

Vinod

Vaikuntanathan

gkm@mit.edu
https://gregkm.me/

Greg

Kahanamoku-Meyer

