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1BM Quantum
Ideal protocol:

133 QUBITS
TUNABLE-COUPLER

- Provably classically hard, reducible to
an established problem

10100111100 - Polynomial-time classical verification

11010110011 9 9 . .
11101100 - Small circuits in terms of qubits, gates,

10011000 and depth

How can a single black-box device prove its quantum capability
to a skeptical classical verifier?
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Verifiable quantum advantage via factoring

An Efficient Quantum Factoring Algorithm

Oded Regev*

Protocol: Pick primes p, g, ask the quantum device to factor n-bit N = pq.
Gates: O(n%/?) Depth: O(n'/?) Qubits: O(n)*

* with the optimizations of Ragavan and Vaikuntanathan [arXiv:2310.00899]
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Verifiable quantum advantage via factoring

Article ‘ Open access ‘ Published: 01 August 2022

Classically verifiable quantum advantage froma

computational Bell test

Gregory D. Kahanamoku-Meyer E, Soonwon Choi, Umesh V. Vazirani & & Norman Y. Yao &

Protocol:
3-round interactive protocol; quantum device evaluates x?> mod N for n-bit N = pg

Gates: O(n) Depth: O(polylog n) Qubits: O(n)

.. hote it doesn't actually factor the number!
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Shor Om?) | Om) | O(n)
Regev + RV23 | O(n3/2) | O(n"2) | O(n)
x? mod N o) | Omn° | O(n)

All algorithms implemented with fast, low-depth multipliers.
Tildes indicate omitted polylog factors.

“Factoring numbers of practical significance requires far more qubits than available in the near
future” -Wikipedia: Shor's algorithm

“Cool but that's still too many qubits” —every experimentalist when | talk about x* mod N
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Verifiable quantum advantage via factoring

For n-bit numbers of the form N = pg:

Algorithm Gates | Depth  Qubits

Shor O(m?) | On) | O(n)
Regev + RV23 | O(n3/2) | O(n"2) | O(n)
x2 mod N o) | O(n° | O(n)
For n-bit numbers of the form N = p?qg, with g < 2™:
Algorithm ‘ Gates ‘ Depth ‘ Qubits

Thiswork | O(n) | O(n/m+m) | O(m)

Space and depth proportional to the length of the factor!
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Why do we need O(n) qubits?

Find some fy(x) w/ Generate
period P, where > poly(P)

P can be used Z |z) | fv ()
a=(0)

QFT on x register,
measure,
postprocess to
find P

Measure, yielding
superposition

to find factors over coset

Shor’s algorithm: Function: fy(x) = @* mod N Period: P = ordy(a) = O(N)

Could we find a function with smaller period?
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Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?

For N = p%g:

H-6)G)-¢)

Period is g—exactly what we need!!
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period P, where > poly(P)
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fn(z) oo eee0eeeeeceecceceocececccccoe
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Factoring with the Jacobi symbol

Find some fy(x) w/ Generate
period P, where > poly(P)

P can be used Z lz) | fn (2))

to find factors

QFT on x register,
measure,

Measure, yielding
superposition

over coset postprocess to

find P

Jacobi factoring, for N = p?g: Function: fy(x) = (%) Period: P =q
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Factoring with the Jacobi symbol

Find some fy(x) w/ Generate
period P, where > poly(P)
P can be used Z |z | £ ()

to find factors

QFT on x register,
measure,

Measure, yielding
superposition

over coset postprocess to

find P

Jacobi factoring, for N = p?g: Function: fy(x) = (%) Period: P =q

Is this going to actually work?

14
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Li, Peng, Du, Suter '12

LDPS. “An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Nature Scientific Reports, 2012.

Quantum squarefree decomposition N — P?Q via Jacobi symbol
was known in the literature a decade ago!

Our contributions:
- Period finding yields Q exactly if we take a superposition x € [0,N — 1]
- With superposition only to poly(Q), algorithm still succeeds w.h.p.

- Jacobi symbol can be computed efficiently via standard circuits

- When quantum input is small, extremely efficient quantum circuits exist!
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Computing the Jacobi symbol

Jacobi symbol < Greatest common divisor

Classic GCD algorithms: (let b < a)

Euclidean algorithm Binary GCD
Euclid, Greece, 2000 years ago Fangtian, China, 2000 years ago
Suppose a, b odd
[terate: Iterate:
ged(a, b) — ged(b, a mod b) ged(a, b) — ged(b, (a — b)/2")

Both seem to require at least O(n) qubits, and not reversible...
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Computing the Jacobi symbol

Result: Quantum circuit for [x) — (%) [x), with qubit count

Key identities:

Idea: For n-bit N and m-bit x,

find N’ = kx s.t. only leading m bits of N — N" are nonzero
19



Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N = kx s.t. only leading m bits of N — N" are nonzero

Overall plan:

20



Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N = kx s.t. only leading m bits of N — N" are nonzero

Overall plan:

-3

20
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Idea: For n-bit N and m-bit x,
find N = kx s.t. only leading m bits of N — N" are nonzero

Overall plan:

- (%) -(55)
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Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N = kx s.t. only leading m bits of N — N" are nonzero

Overall plan:

)~ (F) - (155) - (t=m)

Last value has two m-bit inputs; cost is independent of N with standard circuits.
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Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N = kx s.t. only leading m bits of N — N" are nonzero

Overall plan:

— _ n—m
(5) . N N N — kx . (N — kx)/2
N X X X
Last value has two m-bit inputs; cost is independent of N with standard circuits.

Goal #2: Circuit for |x) [0™) — |x) [N")

20
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|x) = |11 00101 1)
N =110011010100611
IN')= |06 0000 0 0)
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Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

IX) =[1 0010 11)
N =11001101010011
IN')=|0 0011101010011

Gate count: O(nm).
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Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

IX) =[1 0010 11)
N =11001101010011
IN')=|0 0011101010011

Gate count: O(nm). We can do better!

21
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N =1001010111100101
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IN')= 000
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Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x) = [1 01
N =100101061111
IN')=|0 0 OO OO0O00011

lcy = |1 01
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Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x) =|2 011110 1)

N =10010101111001010101100111110101
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Computing the Jacobi symbol, fast!

Result: Fast circuit for |x) |[0™) — |x) [N')

Suppose t-bit multiplication costs Gu(t) gates, Du(t) depth, Su(t) qubits.

Circuit cost:

Gates: O( - Gu(m))
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Computing the Jacobi symbol, fast!

Result: Fast circuit for |x) |[0™) — |x) [N')

Suppose t-bit multiplication costs Gu(t) gates, Du(t) depth, Su(t) qubits.

Circuit cost:
Gates: O( - Gu(m))

Depth: O )

Space: O(Su(m))
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Computing the Jacobi symbol

Overall plan:

(=)~ () - (=2
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Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with g < 2™
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Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with g < 2™

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(nm) Gates: O(nlogm)
Depth: O(n) Depth: O(n/m + m)

Space: O(m) Space: O(m)
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Aside: fast multiplication in low space

[GDKM, Yao; arXiv:2403.18006]
New quantum multiplication circuit:

- Gates: O (t'¢)
- Ancillas: zero!

26



Aside: fast multiplication in low space

[GDKM, Yao; arXiv:2403.18006]
New quantum multiplication circuit:

- Gates: O (t'¢)
- Ancillas: zero!

[GDKM, Gidney, Chuang; in prep.]
Parallel version of that circuit:

- Depth: O(t°)
- Ancillas: o(t)

26



Aside: fast multiplication in low space

[GDKM, Yao; arXiv:2403.18006]
New quantum multiplication circuit:
- Gates: O (t'¢)

. Ancillas: zero! This mult. + standard GCD:

Gates: O.(nm¢ + m?)
Depth: O.((n/m)**¢ + m)
Space: O(m)

[GDKM, Gidney, Chuang; in prep.]
Parallel version of that circuit:

- Depth: O(t°)
- Ancillas: o(t)
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Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with g < 2™

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(nm) Gates: O(nlogm)
Depth: O(n + m) Depth: O(n/m + m)

Space: O(m) Space: O(m)
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What integers should we apply it to?

Classical factoring: for integers N = p?qg, with n = logN and m = logq

General Number Field Sieve: Lenstra ECM/Mulder:

Used for RSA integers Used for integers with small factors

Costs roughly exp (O(v/n)) Costs roughly exp (O(v/m))
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What integers should we apply it to?

Classical factoring: for integers N = p?qg, with n = logN and m = logq

General Number Field Sieve: Lenstra ECM/Mulder:
Used for RSA integers Used for integers with small factors
Costs roughly exp (O(v/n)) Costs roughly exp (O(v/m))

Set m = O(n??3) for the cheapest quantum circuit classically as hard as RSA
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Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with logg = m = 0(n*/?)

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(n5/3) Gates: O(n)
Depth: O(n) Depth: O(n?/3)

Space: O(n?/?) Space: O(n?/?)

29



Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with logg = m = 0(n*/?)

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(n5/3) Gates: O(n)
Depth: O(n) Depth: O(n?/?)
Space: O(n?/?) Space: O(n?/?)

Space 2m + o(m) seems achievable.
Classically-hard factoring with a few hundred qubits?

29



Summary and open questions

Factoring certain n-bit integers N = p?q in:
- Gates: O(n)
- Space and depth: O(n?/3)
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Summary and open questions

Factoring certain n-bit integers N = p?q in:
- Gates: O(n)
- Space and depth: O(n?/3)

Open questions/directions:

- Practical classical hardness—what should m be, concretely?
- Optimization of concrete circuits

- Can this be generalized?

- Currently: completely factor any integer with distinct exponents in prime factorization
- Further generalizations? RSA??
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