The Jacobi Factoring Circuit
Classically-hard factoring in sublinear quantum space and depth

Gregory D. Kahanamoku-Meyer* Seyoon Ragavan?
Vinod Vaikuntanathan?* Katherine van Kirk"

*MIT, "Harvard

November 19, 2024

Verifiable quantum advantage

1BM Quantum

HERON
133 QuBITS ﬁ
TUNABLE-COUPLER

10100111100
11010110011
11101100
10011000

How can a single black-box device prove its quantum capability
to a skeptical classical verifier?

Verifiable quantum advantage

1BM Quantum

Ideal protocol:

133 QUBITS
TUNABLE-COUPLER

10100111100
11010110011
11101100
10011000

How can a single black-box device prove its quantum capability
to a skeptical classical verifier?

Verifiable quantum advantage

1BM Quantum

Ideal protocol:

133 QUBITS
TUNABLE-COUPLER

- Provably classically hard, reducible to
an established problem

10100111100
11010110011
11101100
10011000

How can a single black-box device prove its quantum capability
to a skeptical classical verifier?

Verifiable quantum advantage

1BM Quantum

Ideal protocol:

133 QUBITS
TUNABLE-COUPLER

- Provably classically hard, reducible to
an established problem

10100111100 - Polynomial-time classical verification

11010110011
11101100
10011000

How can a single black-box device prove its quantum capability
to a skeptical classical verifier?

Verifiable quantum advantage

1BM Quantum
Ideal protocol:

133 QUBITS
TUNABLE-COUPLER

- Provably classically hard, reducible to
an established problem

10100111100 - Polynomial-time classical verification

11010110011 9 9 . .
11101100 - Small circuits in terms of qubits, gates,

10011000 and depth

How can a single black-box device prove its quantum capability
to a skeptical classical verifier?

Verifiable quantum advantage via factoring

Algorithms for Quantum Computation:
Discrete Logarithms and Factoring

Peter W. Shor
AT&T Bell Labs
Room 2D-149
600 Mountain Ave.
Murray Hill, NJ 07974, USA

Protocol: Pick primes p, g, ask the quantum device to factor n-bit N = pq.

Verifiable quantum advantage via factoring

Algorithms for Quantum Computation:
Discrete Logarithms and Factoring

Peter W. Shor
AT&T Bell Labs
Room 2D-149
600 Mountain Ave.
Murray Hill, NJ 07974, USA

Protocol: Pick primes p, g, ask the quantum device to factor n-bit N = pq.

Gates: O(n?) Depth: O(n) Qubits: O(n)

Verifiable quantum advantage via factoring

An Efficient Quantum Factoring Algorithm

Oded Regev*

Protocol: Pick primes p, g, ask the quantum device to factor n-bit N = pq.
Gates: O(n%/?) Depth: O(n'/?) Qubits: O(n)*

* with the optimizations of Ragavan and Vaikuntanathan [arXiv:2310.00899]

Verifiable quantum advantage via factoring

Article ‘ Open access ‘ Published: 01 August 2022

Classically verifiable quantum advantage froma

computational Bell test

Gregory D. Kahanamoku-Meyer E, Soonwon Choi, Umesh V. Vazirani & & Norman Y. Yao &

Protocol:
3-round interactive protocol; quantum device evaluates x?> mod N for n-bit N = pg

Gates: O(n) Depth: O(polylog n) Qubits: O(n)

Verifiable quantum advantage via factoring

Article ‘ Open access ‘ Published: 01 August 2022

Classically verifiable quantum advantage froma

computational Bell test

Gregory D. Kahanamoku-Meyer E, Soonwon Choi, Umesh V. Vazirani & & Norman Y. Yao &

Protocol:
3-round interactive protocol; quantum device evaluates x?> mod N for n-bit N = pg

Gates: O(n) Depth: O(polylog n) Qubits: O(n)

.. hote it doesn't actually factor the number!

Verifiable quantum advantage via factoring

Algorithm Gates ‘ Depth ‘Qubits‘

Shor Om?) | Om) | O(n)
Regev + RV23 | O(n3/2) | O(n"2) | O(n)
x? mod N o) | Omn° | O(n)

All algorithms implemented with fast, low-depth multipliers.
Tildes indicate omitted polylog factors.

Verifiable quantum advantage via factoring

Algorithm Gates ‘ Depth ‘Qubits‘

Shor Om?) | Om) | O(n)
Regev + RV23 | O(n3/2) | O(n"2) | O(n)
x? mod N o) | Omn° | O(n)

All algorithms implemented with fast, low-depth multipliers.
Tildes indicate omitted polylog factors.

“Factoring numbers of practical significance requires far more qubits than available in the near
future” -Wikipedia: Shor's algorithm

Verifiable quantum advantage via factoring

Algorithm Gates ‘ Depth ‘Qubits‘

Shor Om?) | Om) | O(n)
Regev + RV23 | O(n3/2) | O(n"2) | O(n)
x? mod N o) | Omn° | O(n)

All algorithms implemented with fast, low-depth multipliers.
Tildes indicate omitted polylog factors.

“Factoring numbers of practical significance requires far more qubits than available in the near
future” -Wikipedia: Shor's algorithm

“Cool but that's still too many qubits” —every experimentalist when | talk about x* mod N

Verifiable quantum advantage via factoring

For n-bit numbers of the form N = pg:

Algorithm Gates | Depth Qubits

Shor O(m?) | On) | O(n)
Regev + RV23 | O(n3/2) | O(n"2) | O(n)
x2 mod N o) | O(n° | O(n)
For n-bit numbers of the form N = p?q, with g < 2™:
Algorithm ‘ Gates ‘ Depth ‘ Qubits

Thiswork | O(n) | O(n/m+m) | O(m)

Verifiable quantum advantage via factoring

For n-bit numbers of the form N = pg:

Algorithm Gates | Depth Qubits

Shor O(m?) | On) | O(n)
Regev + RV23 | O(n3/2) | O(n"2) | O(n)
x2 mod N o) | O(n° | O(n)
For n-bit numbers of the form N = p?qg, with g < 2™:
Algorithm ‘ Gates ‘ Depth ‘ Qubits

Thiswork | O(n) | O(n/m+m) | O(m)

Space and depth proportional to the length of the factor!

Why do we need O(n) qubits?

Find some fy(x) w/
period P, where
P can be used
to find factors

Why do we need O(n) qubits?

Find some fi(x) w/ Generate
period P, where > poly(P)
P can be used Z 2} | fn ()

to find factors

Why do we need O(n) qubits?

Find some fi(x) w/ Generate
period P, where > poly(P)
P can be used Z 2} | fn ()

to find factors

Measure, yielding
superposition
over coset

Why do we need O(n) qubits?

Find some fy(x) w/ Generate
period P, where > poly(P)
P can be used Z 2} | fn ()

to find factors

QFT on x register,
measure,
postprocess to
find P

Measure, yielding
superposition
over coset

=0

Why do we need O(n) qubits?

Find some fy(x) w/ Generate
period P, where > poly(P)
P can be used Z 2} | fn ()

to find factors

QFT on x register,
measure,
postprocess to
find P

Measure, yielding
superposition
over coset

Shor’s algorithm: Function: fy(x) = @* mod N Period: P = ordy(a) = O(N)

Why do we need O(n) qubits?

Find some fy(x) w/ Generate
period P, where > poly(P)

P can be used Z |z) | fv ()
a=(0)

QFT on x register,
measure,
postprocess to
find P

Measure, yielding
superposition

to find factors over coset

Shor’s algorithm: Function: fy(x) = @* mod N Period: P = ordy(a) = O(N)

Could we find a function with smaller period?

Some number theory

Legendre symbol

Some number theory

Legendre symbol

For a prime p:

0 ifx=0 (modp)
(X> = {1 if3wst w>=x (mod p)
—1 otherwise

Some number theory

Legendre symbol

For a prime p:

0 ifx=0 (modp)
() = {1 if3wst w>=x (mod p)
—1 otherwise

Legendre symbol is 1) efficient to compute given x and p, 2) periodic with period p

Some number theory

Jacobi symbol

For a composite number N = []; p;:

(%)-T1(£)

i

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?

1

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?

For N = pq:

-()G)

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?

For N = pq:

-()G)

Period is N—not helpful for factoring!

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?

For N = p%g:

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?

For N = p%g:

H-6)G)-¢)

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?

For N = p%g:

H-6)G)-¢)

Period is g—exactly what we need!!

Factoring with the Jacobi symbol

Find some fy(x) w/
period P, where
P can be used
to find factors

fn(z) oo eee0eeeeeceecceceocececccccoe

Jacobi factoring, for N = p?q: Function: fy(x) = (%) Period: P =q

14

Factoring with the Jacobi symbol

Find some fy(x) w/ Generate
period P, where > poly(P)
P can be used Z |z | £ ()

to find factors

=0

fn(z) oo eee0eeeeeceecceceocececccccoe

r=0 1 2 .-

Jacobi factoring, for N = p?g: Function: fy(x) = (%) Period: P =q

14

Factoring with the Jacobi symbol

Find some fy(x) w/ Generate
period P, where > poly(P)
P can be used Z |z | £ ()

to find factors

Measure, yielding

superposition
over coset

=0

Jacobi factoring, for N = p?g: Function: fy(x) = (%) Period: P =q

14

Factoring with the Jacobi symbol

Find some fy(x) w/ Generate
period P, where > poly(P)

P can be used Z lz) | fn (2))

to find factors

QFT on x register,
measure,

Measure, yielding
superposition

over coset postprocess to

find P

Jacobi factoring, for N = p?g: Function: fy(x) = (%) Period: P =q

14

Factoring with the Jacobi symbol

Find some fy(x) w/ Generate
period P, where > poly(P)
P can be used Z |z | £ ()

to find factors

QFT on x register,
measure,

Measure, yielding
superposition

over coset postprocess to

find P

Jacobi factoring, for N = p?g: Function: fy(x) = (%) Period: P =q

Is this going to actually work?

14

Li, Peng, Du, Suter "12

LDPS. “An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Nature Scientific Reports, 2012.

Quantum squarefree decomposition N — P?Q via Jacobi symbol
was known in the literature a decade ago!

Li, Peng, Du, Suter "12

LDPS. “An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Nature Scientific Reports, 2012.

Quantum squarefree decomposition N — P?Q via Jacobi symbol
was known in the literature a decade ago!

Their results:

- Period finding yields Q exactly if we take a superposition x € [0,N — 1]

- Jacobi symbol can be computed efficiently via standard circuits

Li, Peng, Du, Suter "12

LDPS. “An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Nature Scientific Reports, 2012.

Quantum squarefree decomposition N — P?Q via Jacobi symbol
was known in the literature a decade ago!

- Period finding yields Q exactly if we take a superposition x € [0,N — 1]

- Jacobi symbol can be computed efficiently via standard circuits

Li, Peng, Du, Suter '12

LDPS. “An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Nature Scientific Reports, 2012.

Quantum squarefree decomposition N — P?Q via Jacobi symbol
was known in the literature a decade ago!

Our contributions:
- Period finding yields Q exactly if we take a superposition x € [0,N — 1]
- With superposition only to poly(Q), algorithm still succeeds w.h.p.

- Jacobi symbol can be computed efficiently via standard circuits

- When quantum input is small, extremely efficient quantum circuits exist!

Computing the Jacobi symbol

Goal: Compute (%)

Computing the Jacobi symbol

Goal: Compute (%)

(g) € {-1,0,1} (1)

Computing the Jacobi symbol

Goal: Compute |x) — (%) [x)

(%) e{-1,1} (1)

Computing the Jacobi symbol

Goal: Compute |x) — (%) [x)

(%) e{-1,1} (1)

Recall: N is classical, n bits; |x) is quantum, m qubits—and potentially m < n.

Computing the Jacobi symbol

Goal: Compute |x) — (%) [x)
ay ~
(B)e{—u1} (1)
Recall: N is classical, n bits; |x) is quantum, m qubits—and potentially m < n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Computing the Jacobi symbol

Goal: Compute |x) — (%) [x)
ay ~
(B)e{—u1} (1)
Recall: N is classical, n bits; |x) is quantum, m qubits—and potentially m < n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Computing the Jacobi symbol

Goal: Compute |x) — (%) [x); N classical

Computing the Jacobi symbol

Goal: Compute |x) — (%) [x); N classical

Some identities:

Computing the Jacobi symbol

Goal: Compute |x) — (%) [x); N classical

Some identities:

Jacobi symbol < Greatest common divisor

Computing the Jacobi symbol

Jacobi symbol < Greatest common divisor

Classic GCD algorithms: (let b < a)

Computing the Jacobi symbol

Jacobi symbol < Greatest common divisor

Classic GCD algorithms: (let b < a)

Euclidean algorithm
Euclid, Greece, 2000 years ago

[terate:

ged(a, b) — ged(b, a mod b)

Computing the Jacobi symbol

Jacobi symbol < Greatest common divisor

Classic GCD algorithms: (let b < a)

Euclidean algorithm
Euclid, Greece, 2000 years ago

[terate:

ged(a, b) — ged(b, a mod b)

Binary GCD
Fangtian, China, 2000 years ago

Suppose a, b odd
Iterate:

ged(a, b) — ged(b, (a — b)/2%)

Computing the Jacobi symbol

Jacobi symbol < Greatest common divisor

Classic GCD algorithms: (let b < a)

Euclidean algorithm Binary GCD
Euclid, Greece, 2000 years ago Fangtian, China, 2000 years ago
Suppose a, b odd
[terate: Iterate:
ged(a, b) — ged(b, a mod b) ged(a, b) — ged(b, (a — b)/2")

Both seem to require at least O(n) qubits, and not reversible...

Computing the Jacobi symbol

Result: Quantum circuit for [x) — (%) [x), with qubit count

19

Computing the Jacobi symbol

Result: Quantum circuit for [x) — (%) [x), with qubit count

Key identities:

N——
I
—~
N
SN~—
=
c
VS
o|
N—
—h
o
=
~
wn
—
Q\
I
o)
\
N
~
=
o
([@X
[@X

19

Computing the Jacobi symbol

Result: Quantum circuit for [x) — (%) [x), with qubit count

Key identities:

Idea: For n-bit N and m-bit x,

find N’ = kx s.t. only leading m bits of N — N" are nonzero
19

Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N = kx s.t. only leading m bits of N — N" are nonzero

Overall plan:

20

Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N = kx s.t. only leading m bits of N — N" are nonzero

Overall plan:

-3

20

Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N = kx s.t. only leading m bits of N — N" are nonzero

Overall plan:

- (%) -(55)

20

Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N = kx s.t. only leading m bits of N — N" are nonzero

Overall plan:

() () = (B) - (=

20

Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N = kx s.t. only leading m bits of N — N" are nonzero

Overall plan:

)~ (F) - (155) - (t=m)

Last value has two m-bit inputs; cost is independent of N with standard circuits.

20

Computing the Jacobi symbol

Idea: For n-bit N and m-bit x,
find N = kx s.t. only leading m bits of N — N" are nonzero

Overall plan:

— _ n—m
(5) . N N N — kx . (N — kx)/2
N X X X
Last value has two m-bit inputs; cost is independent of N with standard circuits.

Goal #2: Circuit for |x) [0™) — |x) [N")

20

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

|x) = |11 00101 1)
N =110011010100611
IN')= |06 0000 0 0)

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

|x) = |11 00101 1)
N =110011010100 1|1
IN')= |0 60 00 0|0)

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

|X) = 1100101 1)
N =11001101010011
IN')= 1100101 1)

|c)=|1)

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

|x) = |11 00101 1)
N =110011010100611
IN')= |11 001011)

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

|x) = |11 00101 1)
N =110011010100611
IN')= 10610010 1)1

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

|X) = 110 01011)
N =110011010100][1]1
IN')= 1010 01 0/[1)1

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

|X) = 110 01011)
N =110011010100][1]1
IN')= |01oo1o1

|c)=1]0)

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

|x) = |11 00101 1)
N =110011010100611
IN')= 10610010 1)1

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

|x) = |1 00101 1)
N =110011010100611
IN')= |0010010)11

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

|x) = |1 00101 1)
N =110011010100611
IN')= 000 1001)011

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

|x) = |1 00101 1)
N =110011010100611
IN')= 1010100011

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

IX) =[1 00 10 11)
N =11001101010011
IN')=|0 0011101010011

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

IX) =[1 0010 11)
N =11001101010011
IN')=|0 0011101010011

Gate count: O(nm).

21

Computing the Jacobi symbol

Goal #2: Circuit for |x) [0™) — |x) [N")

IX) =[1 0010 11)
N =11001101010011
IN')=|0 0011101010011

Gate count: O(nm). We can do better!

21

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x) =
N =1001010111100101

010
IN')= 000

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x)y = [10111101)
N =10010101111001010101100111110101
IN")= |0 0000000060000 O 0)
|x_modinv) = |1 0601010 1)

[1/x) = |1 0101101 0)

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x)y = [101211101)
N =100101011110010101011200111110101
IN")= |6 600 000O0O000006O0O0OO
|x_modinv) = |1 60 1010 1)

[1/x) = |1 0101101 0)

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x)y = [10111101)
N =10010101111001010101100111110101
IN")= |0 0000000060000 O 0)

[cy = 1001110611)
|x_modinv) = |1 0601010 1)

[1/x) = |1 0101101 0)

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

|x) = 10611110 1)
N =1001010111100106101011060111110101
IN")= /61110600061 1110101)

[cy = 1001110611)
|Xx_modinv) = |1 06061010 1)

[1/x) = |1 0101101 0)

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x)y = [10111101)
N =10010101111001010101100111110101
IN")= /61110600061 1110101)
|x_modinv) = |1 0601010 1)

[1/x) = |1 0101101 0)

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x)y = [10111101)

N =10010101111001010101100111110101
IN')= /0000000606111 0000)11110101
|x_modinv) = |1 0601010 1)

[1/x) = |1 0101101 0)

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x)y = [10111101)

N =1001010111100101/01011001j11110101
IN")= /6000006060111 00006j111106101
|x_modinv) = |1 60 1010 1)

[1/x) = |1 0101101 0)

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x)y = [10111101)

N =10010101111001010101100111110101

IN')= /0000000606111 0000)11110101
[c) =11 060601011)

|x_modinv) = |1 0601010 1)

[1/x) = |1 0101101 0)

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x)y = [10111101)

N =10010101111001010101100111110101

IN")= /61 1106100010611001)211106101
[c) =11 060601011)

|x_modinv) = |1 0601010 1)

[1/x) = |1 0101101 0)

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x)y = [10111101)

N =10010101111001010101100111110101
IN")= /61 1106100010611001)211106101
|x_modinv) = |1 0601010 1)

[1/x) = |1 0101101 0)

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x)y = 1011110 1)

N =10010101111001010101100111110101
IN')=|0 0000000011101 0060)010110061111106101
|x_modinv) = |1 0601010 1)

[1/x) = |1 0101101 0)

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x) = [1 01
N =100101061111
IN')=|0 0 OO OO0O00011

lcy = |1 01
|x_modinv) = |1 060 1010

[1/x) = |1 0101101 0)

or e r
Re o R
ORr R R
[cRcRoNo)
R oR R
lolo)
[N
[olG)
[N
(RN
ol o)
[olG)
[N
(RN
[N
[y
[N
[olc)
[N
oo
[N

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x)y = 1011110 1)

N =10010101111001010101100111110101

IN')=[1 001 00061111006101)01011060111110101
[c) =1 0106100 1)

|x_modinv) = |1 0601010 1)

[1/x) = |1 0101101 0)

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x)y = 1011110 1)

N =10010101111001010101100111110101
IN')=[1 001 00061111006101)01011060111110101
|x_modinv) = |1 0601010 1)

[1/x) = |1 0101101 0)

22

Computing the Jacobi symbol, fast!

Goal #2: Circuit for |x) |0™) — |x) [N')

[x) =|2 011110 1)

N =10010101111001010101100111110101
INHY=[100100061)111060610101011060111110101
|x_modinv) = |1 0601010 1)

[1/x) = |1 0101101 0)

22

=
(%]
e
[s)
Q0
s
>
0
.|m
(@]
o
icd
Q
{5
)
o)
=
B
>
o
£
(@,
()

Goal #2: Circuit for |x) |0™) — |x) [N')

[x) =1 011110 1)

10010101111 0010101011060111110101
IN')=[1©010001)2111001061010110061111106101

N

22

Computing the Jacobi symbol, fast!

Result: Fast circuit for |x) |[0™) — |x) [N')

Suppose t-bit multiplication costs Gu(t) gates, Du(t) depth, Su(t) qubits.

Circuit cost:

Gates: O(- Gu(m))

23

Computing the Jacobi symbol, fast!

Result: Fast circuit for |x) |[0™) — |x) [N')

Suppose t-bit multiplication costs Gu(t) gates, Du(t) depth, Su(t) qubits.

Circuit cost:

23

Computing the Jacobi symbol, fast!

Result: Fast circuit for |x) |[0™) — |x) [N')

Suppose t-bit multiplication costs Gu(t) gates, Du(t) depth, Su(t) qubits.

Circuit cost:
Gates: O(- Gu(m))

Depth: O)

Space: O(Su(m))

23

Computing the Jacobi symbol

Overall plan:

(=)~ () - (=2

24

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with g < 2™

25

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with g < 2™

Schoolbook mult. + standard GCD:

Gates: O(nm)
Depth: O(n)
Space: O(m)

25

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with g < 2™

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(nm) Gates: O(nlogm)
Depth: O(n) Depth: O(n/m + m)

Space: O(m) Space: O(m)

25

Aside: fast multiplication in low space

[GDKM, Yao; arXiv:2403.18006]
New quantum multiplication circuit:

- Gates: O (t'¢)
- Ancillas: zero!

26

Aside: fast multiplication in low space

[GDKM, Yao; arXiv:2403.18006]
New quantum multiplication circuit:

- Gates: O (t'¢)
- Ancillas: zero!

[GDKM, Gidney, Chuang; in prep.]
Parallel version of that circuit:

- Depth: O(t°)
- Ancillas: o(t)

26

Aside: fast multiplication in low space

[GDKM, Yao; arXiv:2403.18006]
New quantum multiplication circuit:
- Gates: O (t'¢)

. Ancillas: zero! This mult. + standard GCD:

Gates: O.(nm¢ + m?)
Depth: O.((n/m)**¢ + m)
Space: O(m)

[GDKM, Gidney, Chuang; in prep.]
Parallel version of that circuit:

- Depth: O(t°)
- Ancillas: o(t)

26

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with g < 2™

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(nm) Gates: O(nlogm)
Depth: O(n + m) Depth: O(n/m + m)

Space: O(m) Space: O(m)

27

What integers should we apply it to?

Classical factoring: for integers N = p?qg, with n = logN and m = logq

General Number Field Sieve: Lenstra ECM/Mulder:

Used for RSA integers Used for integers with small factors

Costs roughly exp (O(v/n)) Costs roughly exp (O(v/m))

28

What integers should we apply it to?

Classical factoring: for integers N = p?qg, with n = logN and m = logq

General Number Field Sieve: Lenstra ECM/Mulder:
Used for RSA integers Used for integers with small factors
Costs roughly exp (O(v/n)) Costs roughly exp (O(v/m))

Set m = O(n??3) for the cheapest quantum circuit classically as hard as RSA

28

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with logg = m = 0(n*/?)

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(n5/3) Gates: O(n)
Depth: O(n) Depth: O(n?/3)

Space: O(n?/?) Space: O(n?/?)

29

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with logg = m = 0(n*/?)

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(n5/3) Gates: O(n)
Depth: O(n) Depth: O(n?/?)
Space: O(n?/?) Space: O(n?/?)

Space 2m + o(m) seems achievable.
Classically-hard factoring with a few hundred qubits?

29

Summary and open questions

Factoring certain n-bit integers N = p?q in:
- Gates: O(n)
- Space and depth: O(n?/3)

30

Summary and open questions

Factoring certain n-bit integers N = p?q in:
- Gates: O(n)
- Space and depth: O(n?/3)

Open questions/directions:

30

Summary and open questions

Factoring certain n-bit integers N = p?q in:
- Gates: O(n)
- Space and depth: O(n?/3)

Open questions/directions:

- Practical classical hardness—what should m be, concretely?

30

Summary and open questions

Factoring certain n-bit integers N = p?q in:
- Gates: O(n)
- Space and depth: O(n?/3)

Open questions/directions:

- Practical classical hardness—what should m be, concretely?

- Optimization of concrete circuits

30

Summary and open questions

Factoring certain n-bit integers N = p?q in:
- Gates: O(n)
- Space and depth: O(n?/3)

Open questions/directions:

- Practical classical hardness—what should m be, concretely?
- Optimization of concrete circuits
- Can this be generalized?

30

Summary and open questions

Factoring certain n-bit integers N = p?q in:
- Gates: O(n)
- Space and depth: O(n?/3)

Open questions/directions:

- Practical classical hardness—what should m be, concretely?
- Optimization of concrete circuits

- Can this be generalized?
- Currently: completely factor any integer with distinct exponents in prime factorization

30

Summary and open questions

Factoring certain n-bit integers N = p?q in:
- Gates: O(n)
- Space and depth: O(n?/3)

Open questions/directions:

- Practical classical hardness—what should m be, concretely?
- Optimization of concrete circuits

- Can this be generalized?

- Currently: completely factor any integer with distinct exponents in prime factorization
- Further generalizations? RSA??

30

Questions?

"Nt
=)
f .
¢

>

Greg
Kahanamoku-Meyer

gkm@mit.edu
https://gregkm.me/

Seyoon
Ragavan

Vinod
Vaikuntanathan

Katherine
van Kirk

