

Recent advances in quantum factoring

Greg Kahanamoku-Meyer

May 26, 2025

Can the reader say what two numbers multiplied together will produce the number 8,616,460,799?

I think it unlikely that anyone but myself will ever know.

-William Stanley Jevons, 1874

Noisy qubits needed to factor 2048-bit RSA:

[Gidney + Ekera '19] \sim 20 million

Noisy qubits needed to factor 2048-bit RSA:

[Gidney + Ekera '19] \sim 20 million

[Gidney last week] < 1 million

Noisy qubits needed to factor 2048-bit RSA:

[Gidney + Ekera '19] \sim 20 million [Gidney last week] < 1 million

Two hypothetical futures:

Noisy qubits needed to factor 2048-bit RSA:

[Gidney + Ekera '19] \sim 20 million

[Gidney last week] < 1 million

Two hypothetical futures:

Future A

2027: Circuit discovered needing only 50,000 qubits

2032: Device with 50,000 qubits constructed

Noisy qubits needed to factor 2048-bit RSA:

[Gidney + Ekera '19] \sim **20 million**

[Gidney last week] < 1 million

Two hypothetical futures:

Future A

<u>Future B</u>

2027: Circuit discovered needing only 50,000 qubits

2032: Device with 50,000 qubits constructed

2032: Device with 50,000 qubits constructed

2033: Circuit discovered needing only 50,000 qubits

Noisy qubits needed to factor 2048-bit RSA:

[Gidney + Ekera '19] \sim **20 million**

[Gidney last week] < 1 million

Two hypothetical futures:

Future A

<u>Future B</u>

2027: Circuit discovered needing only 50,000 qubits

2032: Device with 50,000 qubits constructed

2032: Device with 50,000 qubits constructed

2033: Circuit discovered needing only 50,000 qubits

I want to live in Future A!

Other less important reasons:

Other less important reasons:

 $\boldsymbol{\cdot}$ Factoring makes a really straightforward efficiently-verifiable proof of quantumness

Other less important reasons:

- $\boldsymbol{\cdot}$ Factoring makes a really straightforward efficiently-verifiable proof of quantumness
- The math is really fun

2019 Greg

"Let's make a proof of quantumness so efficient we can run it on physical qubits!"

2019 Greg

"Let's make a proof of quantumness so efficient we can run it on physical qubits!"

2025 Greg

"We will need quantum error correction to do any nontrivial cryptography."

2019 Greg

"Let's make a proof of quantumness so efficient we can run it on physical qubits!" **Fact:** Logical error rate is exponential with code distance.

2025 Greg

"We will need quantum error correction to do any nontrivial cryptography."

2019 Greg

"Let's make a proof of quantumness so efficient we can run it on physical qubits!"

2025 Greg

"We will need quantum error correction to do any nontrivial cryptography."

Fact: Logical error rate is exponential with code distance.

Imagine two algorithms, A and B. B uses half as many qubits as A, but 10 times as many gates.

Which will we be able to run first?

2019 Greg

"Let's make a proof of quantumness so efficient we can run it on physical qubits!"

2025 Greg

"We will need quantum error correction to do any nontrivial cryptography."

Fact: Logical error rate is exponential with code distance.

Imagine two algorithms, A and B. B uses half as many qubits as A, but 10 times as many gates.

Which will we be able to run first?

With some set number of physical qubits below EC threshold, can double code distance if we use algorithm B--exponential decrease in logical error rate!

2019 Greg

"Let's make a proof of quantumness so efficient we can run it on physical qubits!"

2025 Greg

"We will need quantum error correction to do any nontrivial cryptography."

Fact: Logical error rate is exponential with code distance.

Imagine two algorithms, A and B. B uses half as many qubits as A, but 10 times as many gates.

Which will we be able to run first?

Hot take: Right now, we should only really care about logical qubit count.

Should we ever care about gate count and depth?

Should we ever care about gate count and depth?

We should optimize for depth if:

We have very good devices and we care about wall time.

Should we ever care about gate count and depth?

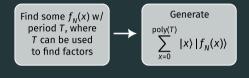
We should optimize for depth if:

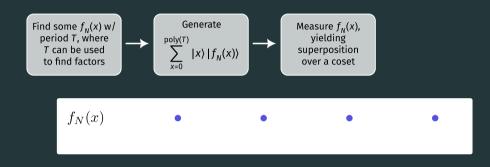
We have very good devices and we care about wall time.

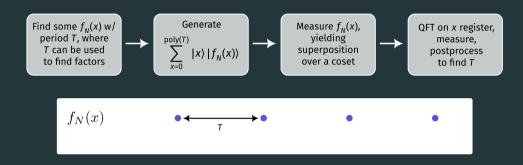
We should optimize for gate count if:

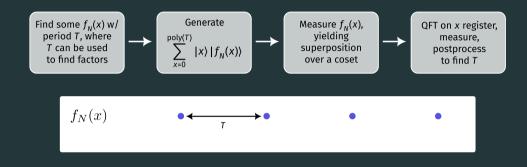
We have pretty good devices that are limited by magic production.

Find some $f_N(x)$ w/period T, where T can be used to find factors



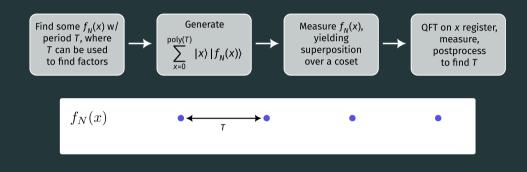






Qubit cost

- Input $|x\rangle$
- Output $|f_N(x)\rangle$
- Workspace

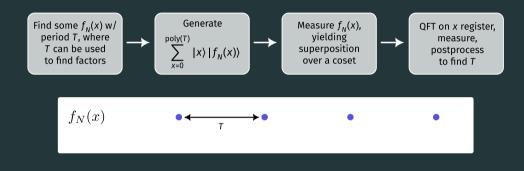


Qubit cost

Gate/depth cost

- Input $|x\rangle$
- Output $|f_N(x)\rangle$
- Workspace

• Cost of $|f_N(x)\rangle$



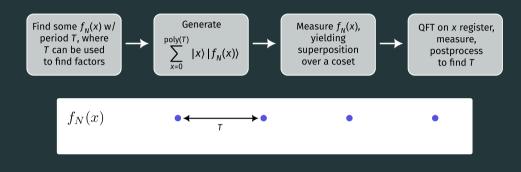
Qubit cost

Gate/depth cost

• Input $|x\rangle$: $O(\log T)$ qubits

• Cost of $|f_N(x)\rangle$

- Output $|f_N(x)\rangle$
- Workspace



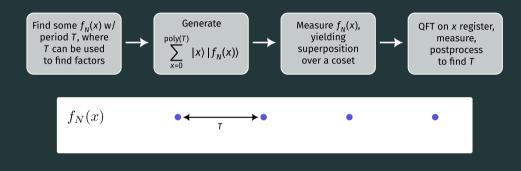
Qubit cost

Gate/depth cost

• Cost of $|f_N(x)\rangle$

- Input $|x\rangle$: $O(\log T)$ qubits
- Output $|f_N(x)\rangle$: $O(\log T)$ qubits
- Workspace

6



Qubit cost

• Input $|x\rangle$: $O(\log T)$ qubits

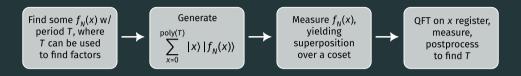
• Output $|f_N(x)\rangle$: $O(\log T)$ qubits

Workspace: ???

Gate/depth cost

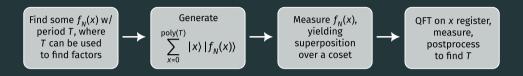
• Cost of $|f_N(x)\rangle$: ???

Shor's algorithm



Function: $f_N(x) = a^x \mod N$ Period: $T = \operatorname{ord}_N(a) \sim \mathcal{O}(N)$

Shor's algorithm



Function: $f_N(x) = a^x \mod N$

Period: $T = \operatorname{ord}_N(a) \sim \mathcal{O}(N)$

Let $n = \lceil \log N \rceil$:

Qubit cost

- Input $|x\rangle$: 2n qubits
- Output $|f_N(x)\rangle$: n qubits
- Workspace: ???

Gate/depth cost

• Cost of $|f_N(x)\rangle$: ???

7

Key observation (Zalka '98, and others):

$$a^{x} \mod N = \prod_{i} c_{i}^{x_{i}} \mod N$$

where $c_i = a^{2^i} \mod N$.

8

Key observation (Zalka '98, and others):

$$a^{\mathsf{x}} \bmod \mathsf{N} = \prod_{i} c_i^{\mathsf{x}_i} \bmod \mathsf{N}$$

where $c_i = a^{2^i} \mod N$. Reuse one qubit for all bits of x.

Key observation (Zalka '98, and others):

$$a^{\mathsf{x}} \bmod \mathsf{N} = \prod_{i} c_i^{\mathsf{x}_i} \bmod \mathsf{N}$$

where $c_i = a^{2^i} \mod N$. Reuse one qubit for all bits of x.

Key operation:
$$|x_i\rangle\,|w
angle
ightarrow |x_i\rangle\,\left|c_i^{\mathsf{x}_i}w
ight
angle$$

Key observation (Zalka '98, and others):

$$a^{x} \bmod N = \prod_{i} c_{i}^{x_{i}} \bmod N$$

where $c_i = a^{2^i} \mod N$. Reuse one qubit for all bits of x.

Key operation: $|x_i\rangle |w\rangle \rightarrow |x_i\rangle |c_i^{x_i}w\rangle$

Qubit cost

- Input $|x\rangle$: **1 qubit** (reused)
- Output $|f_N(x)\rangle$: n qubits
- · Workspace: mult. workspace

Gate/depth cost

- Cost of $|f_N(x)\rangle$:
 - 2n multiplications

Reducing input to 1 (reused) qubit

Key observation (Zalka '98, and others):

$$a^{x} \bmod N = \prod_{i} c_{i}^{x_{i}} \bmod N$$

where $c_i = a^{2^i} \mod N$. Reuse one qubit for all bits of x.

Key operation: $|x_i\rangle |w\rangle \rightarrow |x_i\rangle |c_i^{x_i}w\rangle$

Qubit cost

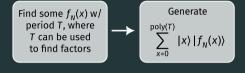
- Input |x>: 1 qubit (reused)
- Output $|f_N(x)\rangle$: n qubits
- · Workspace: mult. workspace

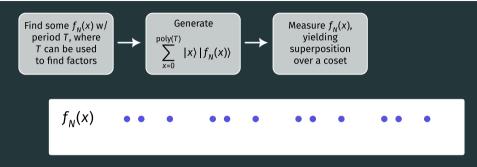
Gate/depth cost

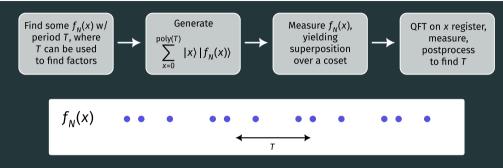
- Cost of $|f_N(x)\rangle$:
 - 2*n* multiplications

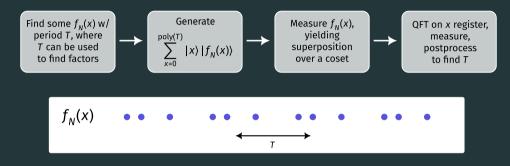
[Gidney + Ekera '19]: Factoring 2048-bit N = pq in 8 hours with 20 million physical qubits

Find some $f_N(x)$ w/ period T, where T can be used to find factors

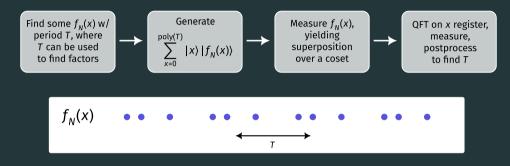






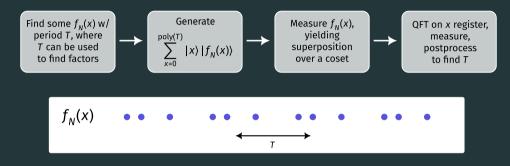


Is this going to actually help (or even work)?



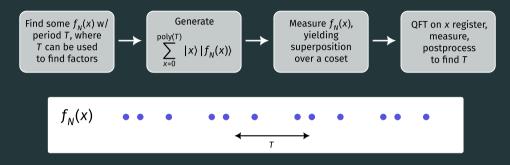
Is this going to actually help (or even work)?

• There could be smaller periods than T [Hales + Hallgren '00]



Is this going to actually help (or even work)?

- There could be smaller periods than T [Hales + Hallgren '00]
- Need $\sim \log T$ qubits for *input*



Is this going to actually help (or even work)?

- There could be smaller periods than T [Hales + Hallgren '00]
- Need $\sim \log T$ qubits for *input*
- Need workspace to compute $f_N(x)$

Avoid periods smaller than T

[May + Schlieper '22]: For some hash function
$$h:\{0,1\}^n \to \{0,1\}$$
, use
$$f_N(x) = h(a^x \bmod N)$$

Avoid periods smaller than T

[May + Schlieper '22]: For some hash function $h:\{0,1\}^n \to \{0,1\}$, use $f_N(x) = h(a^x \bmod N)$

Qubit cost

- Input $|x\rangle$: 2n qubits
- Output $|f_N(x)\rangle$: 1 qubit
- Workspace: O(n) qubits

Gate/depth cost

- Cost of $|f_N(x)\rangle$:
 - 2*n* multiplications

Reduce period, reduce qubits for input



[Ekera + Hastad '17]: Can factor N = pq via discrete log with period $O(\sqrt{N})$

Qubit cost

- Input $|x\rangle$: **n/2 qubits**
- Output $|f_N(x)\rangle$: **1 qubit**
- Workspace: O(n) qubits

Gate/depth cost

- Cost of $|f_N(x)\rangle$:
 - \cdot n/2 multiplications

Reduce workspace

[Chevignard et al. '24]: Used residue number system to cut workspace to $\sim O(\log n)$ qubits

Qubit cost

- Input $|x\rangle$: n/2 qubits
- Output $|f_N(x)\rangle$: **1 qubit**
- Workspace: $O(\log n)$ qubits

Gate/depth cost

- Cost of $|f_N(x)\rangle$:
 - $\cdot \, \sim$ 2 trillion Toffoli gates

Putting it all together



[Gidney last week]: Arithmetic + fault tolerance optimizations

Factor 2048-bit N=pq using < 1 million physical qubits in \sim 1 week

A sublinear space and depth factoring algorithm

For integers $N = P^2Q$: Gate count $\tilde{O}(n)$ Qubits and depth $\tilde{O}(n^{2/3})$

GDKM, S. Ragavan, V. Vaikuntanathan, K. Van Kirk. arXiv:2412.12558

A sublinear space and depth factoring algorithm

For integers $N = P^2Q$: Gate count $\tilde{O}(n)$ Qubits and depth $\tilde{O}(n^{2/3})$

GDKM, S. Ragavan, V. Vaikuntanathan, K. Van Kirk. arXiv:2412.12558

Log-depth "optimistic" QFT with no ancillas

Error bounded by ϵ on all but $O(\epsilon) \cdot 2^n$ basis states

GDKM, J. Blue, T. Bergamaschi, C. Gidney, I. Chuang. arXiv:2505.00701

A sublinear space and depth factoring algorithm

For integers $N = P^2Q$: Gate count $\tilde{O}(n)$ Qubits and depth $\tilde{O}(n^{2/3})$

GDKM, S. Ragavan, V. Vaikuntanathan, K. Van Kirk. arXiv:2412.12558

Log-depth "optimistic" QFT with no ancillas

Error bounded by ϵ on all but $O(\epsilon) \cdot 2^n$ basis states

GDKM, J. Blue, T. Bergamaschi, C. Gidney, I. Chuang. arXiv:2505.00701

Fast quantum integer multiplication

 $O(n^{1+\epsilon})$ gates No ancilla qubits

GDKM, N. Yao. arXiv:2403.18006

A sublinear space and depth factoring algorithm

For integers $N = P^2Q$: Gate count $\tilde{O}(n)$ Qubits and depth $\tilde{O}(n^{2/3})$

GDKM, S. Ragavan, V. Vaikuntanathan, K. Van Kirk. arXiv:2412.12558

Log-depth "optimistic" QFT with no ancillas

Error bounded by ϵ on all but $O(\epsilon) \cdot 2^n$ basis states

GDKM, J. Blue, T. Bergamaschi, C. Gidney, I. Chuang. arXiv:2505.00701

Fast quantum integer multiplication

 $O(n^{1+\varepsilon})$ gates No ancilla qubits

GDKM, N. Yao. arXiv:2403.18006

Shor's algorithm with:

 $O(n^{2+\varepsilon})$ gates $O(n^{1+\varepsilon})$ depth $2n + O(n/\log n)$ total qubits

Factoring in sublinear space and depth

Greg Kahanamoku-Meyer

Seyoon Ragavan

Vinod Vaikuntanathan

Katherine Van Kirk

Asymptotic costs

Main result: Circuit for factoring *n*-bit integers $N = p^2q$, with *m*-bit q

Schoolbook mult. + standard GCD:

<u>Fast mult. + fast GCD:</u>

Gates: O(nm)

Depth: O(n+m)

Space: $\mathcal{O}(m)$

Gates: $\widetilde{\mathcal{O}}(n)$ Depth: $\widetilde{\mathcal{O}}(n/m+m)$

Space: $\widetilde{\mathcal{O}}(m)$

Asymptotic costs

Main result: Circuit for factoring *n*-bit integers $N = p^2q$, with *m*-bit q

Schoolbook mult. + standard GCD:

Fast mult. + fast GCD:

Gates: $\mathcal{O}(nm)$ Depth: $\mathcal{O}(n+m)$

Space: $\mathcal{O}(m+m)$

Gates: $\widetilde{\mathcal{O}}(n)$ Depth: $\widetilde{\mathcal{O}}(n/m+m)$ Space: $\widetilde{\mathcal{O}}(m)$

What should we set *m* to?

What should we set *m* to?

Classical factoring: for integers $N = p^2 q$, with $n = \log N$ and $m = \log q$

General Number Field Sieve:

Used for RSA integers

Costs roughly $\exp\left(\mathcal{O}(\sqrt[3]{n})\right)$

Lenstra ECM/Mulder:

Used for integers with small factors

Costs roughly $\exp\left(\mathcal{O}(\sqrt{m})\right)$

What should we set *m* to?

Classical factoring: for integers $N = p^2 q$, with $n = \log N$ and $m = \log q$

General Number Field Sieve:

Used for RSA integers

Costs roughly $\exp\left(\mathcal{O}(\sqrt[3]{n})\right)$

Lenstra ECM/Mulder:

Used for integers with small factors

Costs roughly $\exp\left(\mathcal{O}(\sqrt{m})\right)$

Set $m=\mathcal{O}(n^{2/3})$ for the *cheapest* quantum circuit classically as hard as RSA

Asymptotic costs

Main result: Circuit for factoring *n*-bit integers $N = p^2 q$, with $\log q = m = O(n^{2/3})$

Schoolbook mult. + standard GCD:

Gates: $\mathcal{O}(n^{5/3})$

Depth: O(n)

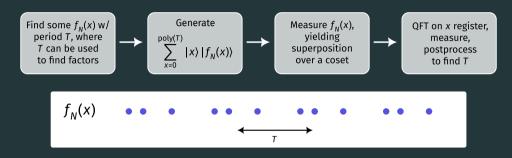
Space: $\overline{\mathcal{O}(n^{2/3})}$

Fast mult. + fast GCD:

Gates: $\widetilde{\mathcal{O}}(n)$

Depth: $\widetilde{\mathcal{O}}(n^{2/3})$

Space: $\widetilde{\mathcal{O}}(n^{2/3})$



Things we need for low qubit count:

- · Small period T
- Avoid smaller periods than T
- Low workspace to compute $f_N(x)$

Legendre symbol

Legendre symbol

For a prime *p*:

$$\left(\frac{x}{p}\right) = \begin{cases} 0 & \text{if } x \equiv 0 \pmod{p} \\ 1 & \text{if } \exists w \text{ s.t. } w^2 \equiv x \pmod{p} \\ -1 & \text{otherwise} \end{cases}$$

Legendre symbol

For a prime *p*:

$$\left(\frac{x}{p}\right) = \begin{cases} 0 & \text{if } x \equiv 0 \pmod{p} \\ 1 & \text{if } \exists w \text{ s.t. } w^2 \equiv x \pmod{p} \\ -1 & \text{otherwise} \end{cases}$$

Legendre symbol is 1) **efficient to compute** given x and p, 2) **periodic** with period p

Jacobi symbol

For a composite number $N = \prod_i p_i$:

$$\left(\frac{x}{N}\right) = \prod_{i} \left(\frac{x}{p_i}\right)$$

Jacobi symbol is 1) **efficient to compute** given x and N, 2) **periodic** with period...?

Jacobi symbol is 1) **efficient to compute** given x and N, 2) **periodic** with period...?

For N = pq:

$$\left(\frac{x}{N}\right) = \left(\frac{x}{p}\right) \left(\frac{x}{q}\right)$$

Jacobi symbol is 1) **efficient to compute** given x and N, 2) **periodic** with period...?

For N = pq:

$$\left(\frac{x}{N}\right) = \left(\frac{x}{p}\right) \left(\frac{x}{q}\right)$$

Period is *N*—not helpful for factoring!

Jacobi symbol is 1) **efficient to compute** given *x* and *N*, 2) **periodic** with period...?

For $N = p^2q$:

$$\left(\frac{x}{N}\right) = \left(\frac{x}{p}\right)^2 \left(\frac{x}{q}\right)$$

Jacobi symbol is 1) **efficient to compute** given x and N, 2) **periodic** with period...?

For $N = p^2q$:

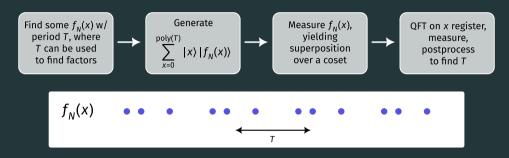
$$\left(\frac{x}{N}\right) = \left(\frac{x}{p}\right)^2 \left(\frac{x}{q}\right) = \left(\frac{x}{q}\right)$$

Jacobi symbol is 1) **efficient to compute** given x and N, 2) **periodic** with period...?

For $N = p^2q$:

$$\left(\frac{x}{N}\right) = \left(\frac{x}{p}\right)^2 \left(\frac{x}{q}\right) = \left(\frac{x}{q}\right)$$

Period is q—exactly what we need!!



Things we need for low qubit count:

- √ Small period T
 - Avoid *smaller* periods than *T*
 - Low workspace to compute $f_N(x)$

Avoiding smaller periods

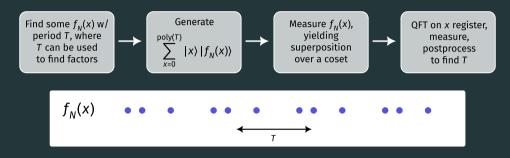
Need to compute the Fourier transform of the Jacobi symbol.

Avoiding smaller periods

Need to compute the Fourier transform of the Jacobi symbol.

Carl Friedrich Gauss, early 1800s: this function has the *ideal* Fourier spectrum for us!

Reducing output to 1 qubit: $f_N(x) : \{0, 1\}^* \to \{0, 1\}$



Things we need for low qubit count:

- ✓ Small period *T*
- \checkmark Avoid smaller periods than T
- Low workspace to compute $f_N(x)$

"An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition Problem." Li, Peng, Du, Suter. Nature Scientific Reports, 2012.

Decomposing $N \to P^2Q$ via Jacobi symbol was known in the literature a decade ago!

"An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition Problem." Li, Peng, Du, Suter. Nature Scientific Reports, 2012.

Decomposing $N \to P^2Q$ via Jacobi symbol was known in the literature a decade ago!

Their results:

- \cdot Jacobi symbol can be computed via standard circuits, using O(n) space
- Quantum period finding yields Q exactly if we take a superposition $x \in [0, N-1]$

"An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition Problem." Li, Peng, Du, Suter. Nature Scientific Reports, 2012.

Decomposing $N \to P^2Q$ via Jacobi symbol was known in the literature a decade ago!

Our contributions:

- Jacobi symbol can be computed via standard circuits, using O(n) space
 - When quantum input is small, extremely efficient quantum circuits exist!
- Quantum period finding yields Q exactly if we take a superposition $x \in [0, N-1]$

"An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition Problem." Li, Peng, Du, Suter. Nature Scientific Reports, 2012.

Decomposing $N \to P^2Q$ via Jacobi symbol was known in the literature a decade ago!

Our contributions:

- \cdot Jacobi symbol can be computed via standard circuits, using O(n) space
 - When quantum input is small, extremely efficient quantum circuits exist!
- Quantum period finding yields Q exactly if we take a superposition $x \in [0, N-1]$
 - With superposition only to $\operatorname{poly}(Q)$, we still succeed $\to x$ needs only $\mathcal{O}(\log Q)$ qubits

Goal: Compute $\left(\frac{x}{N}\right)$

Goal: Compute
$$\left(\frac{x}{N}\right)$$

$$\left(\frac{a}{b}\right) \in \{-1, 0, 1\} \tag{1}$$

Goal: Compute
$$|x\rangle \to \left(\frac{x}{N}\right)|x\rangle$$

$$\left(\frac{a}{b}\right)\widetilde{\in}\{-1,1\}\tag{1}$$

Goal: Compute
$$|x\rangle \to \left(\frac{x}{N}\right)|x\rangle$$

$$\left(\frac{a}{b}\right)\widetilde{\in}\{-1,1\}\tag{1}$$

Recall: N is classical, n bits; $|x\rangle$ is quantum, m qubits—and potentially $m \ll n$.

Goal: Compute
$$|x\rangle \to \left(\frac{x}{N}\right)|x\rangle$$

$$\left(\frac{a}{b}\right)\widetilde{\in}\{-1,1\}\tag{1}$$

Recall: N is classical, n bits; $|x\rangle$ is quantum, m qubits—and potentially $m \ll n$.

The "big" input is entirely classical. Can we implement this circuit using only $\mathcal{O}(m)$ qubits?

Goal: Compute
$$|x\rangle \to \left(\frac{x}{N}\right)|x\rangle$$

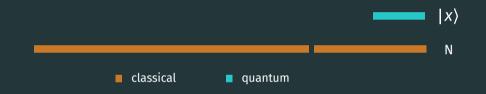
$$\left(\frac{a}{b}\right)\widetilde{\in}\{-1,1\}\tag{1}$$

Recall: N is classical, n bits; $|x\rangle$ is quantum, m qubits—and potentially $m \ll n$.

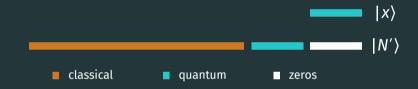
The "big" input is entirely classical. Can we implement this circuit using only O(m) qubits?

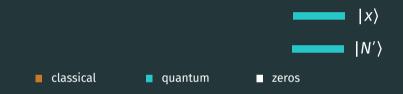
Yes!







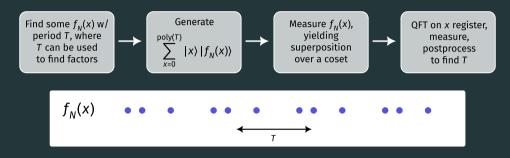




Key idea: can stream through the classical bits of N

Now with two length-m inputs, standard circuits for $\binom{x}{N'}$ have depth and qubits $\widetilde{O}(m)$

Reducing output to 1 qubit: $f_N(x) : \{0,1\}^* \to \{0,1\}$



Things we need for low qubit count:

- ✓ Small period *T*
- \checkmark Avoid smaller periods than T
- ✓ Low workspace to compute $f_N(x)$

Putting it all together: asymptotic costs

Main result: Circuit for factoring *n*-bit integers
$$N = p^2 q$$
, with $\log q = m = O(n^{2/3})$

Schoolbook mult. + standard GCD:

Gates: $\mathcal{O}(nm)$

Depth: O(n+m)

Space: O(m)

Fast mult. + fast GCD:

Gates: $\widetilde{\mathcal{O}}(n)$

Depth: $\widetilde{\mathcal{O}}(n/m+m)$

Space: $\widetilde{\mathcal{O}}(m)$

Putting it all together: asymptotic costs

Main result: Circuit for factoring *n*-bit integers $N = p^2 q$, with $\log q = m = O(n^{2/3})$

Schoolbook mult. + standard GCD:

Gates: O(nm)

Depth: O(n+m)

Space: $\mathcal{O}(m)$

Fast mult. + fast GCD:

Gates: $\widetilde{\mathcal{O}}(n)$

Depth: $\widetilde{\mathcal{O}}(n/m + m)$

Space: $\widetilde{\mathcal{O}}(m)$

Space $\sim 2m$ seems achievable, $m \sim$ 300 seems classically hard. Classically-hard factoring with a few hundred qubits?

Recent results

A sublinear space and depth factoring algorithm

For integers $N = P^2Q$: Gate count $\tilde{O}(n)$ Qubits and depth $\tilde{O}(n^{2/3})$

GDKM, S. Ragavan, V. Vaikuntanathan, K. Van Kirk. arXiv:2412.12558

Log-depth "optimistic" QFT with no ancillas

Error bounded by ϵ on all but $O(\epsilon) \cdot 2^n$ basis states

GDKM, J. Blue, T. Bergamaschi, C. Gidney, I. Chuang. arXiv:2505.00701

Fast quantum integer multiplication

 $O(n^{1+\varepsilon})$ gates No ancilla qubits

GDKM, N. Yao. arXiv:2403.18006

Shor's algorithm with:

 $O(n^{2+\varepsilon})$ gates $O(n^{1+\varepsilon})$ depth $2n + O(n/\log n)$ total qubits

Goal: Implement
$$U_{c\times q}(a)|x\rangle|0\rangle = |x\rangle|ax\rangle$$
, for *n*-bit *a* and *x*

Goal: Implement
$$U_{c\times q}(a)|x\rangle|0\rangle = |x\rangle|ax\rangle$$
, for *n*-bit *a* and *x*

[Draper '00]: Arithmetic in Fourier space

$$QFT |ax\rangle = \sum_{z} \exp\left(\frac{2\pi i axz}{2^n}\right) |z\rangle$$

Goal: Implement
$$U_{c\times q}(a)|x\rangle|0\rangle = |x\rangle|ax\rangle$$
, for *n*-bit *a* and *x*

[Draper '00]: Arithmetic in Fourier space

$$QFT |ax\rangle = \sum_{z} \exp\left(\frac{2\pi i axz}{2^n}\right) |z\rangle$$

Plan:

Goal: Implement
$$U_{c\times q}(a)|x\rangle|0\rangle = |x\rangle|ax\rangle$$
, for *n*-bit *a* and *x*

[Draper '00]: Arithmetic in Fourier space

$$QFT |ax\rangle = \sum_{z} \exp\left(\frac{2\pi i axz}{2^n}\right) |z\rangle$$

Plan: 1) Generate $|x\rangle \sum_{z} |z\rangle$

Goal: Implement
$$\mathcal{U}_{c\times q}(a)|x\rangle|0\rangle = |x\rangle|ax\rangle$$
, for *n*-bit *a* and *x*

[Draper '00]: Arithmetic in Fourier space

$$QFT |ax\rangle = \sum_{z} \exp\left(\frac{2\pi i axz}{2^n}\right) |z\rangle$$

Plan: 1) Generate $|x\rangle \sum_{z} |z\rangle$, 2) apply a phase rotation of $\exp\left(\frac{2\pi i \alpha x z}{2^n}\right)$

Goal: Implement
$$\mathcal{U}_{c\times q}(a)|x\rangle|0\rangle = |x\rangle|ax\rangle$$
, for *n*-bit *a* and *x*

[Draper '00]: Arithmetic in Fourier space

$$QFT |ax\rangle = \sum_{z} \exp\left(\frac{2\pi i axz}{2^n}\right) |z\rangle$$

Plan: 1) Generate $|x\rangle \sum_{z} |z\rangle$, 2) apply a phase rotation of $\exp\left(\frac{2\pi i\alpha xz}{2^n}\right)$, 3) apply QFT⁻¹

Goal: Implement
$$U_{c\times q}(a)|x\rangle|0\rangle = |x\rangle|ax\rangle$$
, for *n*-bit *a* and *x*

[Draper '00]: Arithmetic in Fourier space

$$QFT |ax\rangle = \sum_{z} \exp\left(\frac{2\pi i axz}{2^n}\right) |z\rangle$$

Plan: 1) Generate $|x\rangle \sum_z |z\rangle$, 2) apply a phase rotation of $\exp\left(\frac{2\pi i a x z}{2^n}\right)$, 3) apply QFT⁻¹

[GDKM, Yao '24]: Can apply phase using:

$$O(n^{1+\epsilon})$$
 gates $O(n^{\epsilon})$ depth $O(n/\log n)$ ancillas

A log-depth "optimistic" QFT with no ancillas

Greg Kahanamoku-Meyer

John Blue

Thiago Bergamaschi

Craig Gidney

Ike Chuang

Structure of the QFT

The quantum Fourier transform on *n* qubits (dropping normalization):

$$egin{aligned} \mathsf{QFT}\ket{\mathsf{x}} \equiv \ket{\Phi_{\mathsf{x}}} &= \sum_{y=0}^{2^n-1} e^{2\pi i \mathsf{x} \mathsf{y}/2^n}\ket{\mathsf{y}} \end{aligned}$$

The quantum Fourier transform on n qubits (dropping normalization):

$$| extsf{QFT}| extsf{x}
angle \equiv |\Phi_{ extsf{x}}
angle = igotimes_{i=0}^{n-1} \left(|0
angle + e^{2\pi i |0. extsf{x}_{i} extsf{x}_{i+1}\cdots}|1
angle
ight)$$

where $0.x_i x_{i+1} \cdots = 2^i x / 2^n \mod 1$

The quantum Fourier transform on n qubits (dropping normalization):

$$|\operatorname{QFT}|x
angle \equiv |\Phi_{x}
angle \equiv \bigotimes_{i=0}^{n-1} \left(|0
angle + e^{2\pi i |0.x_{i}x_{i+1}...} |1
angle \right)$$

where $0.x_ix_{i+1}\cdots = 2^ix/2^n \mod 1$

 ϵ -approximate QFT: truncate $0.x_ix_{i+1}\cdots$ after $m \sim O(\log(n/\epsilon))$ bits

The quantum Fourier transform on *n* qubits (dropping normalization):

$$|\operatorname{QFT}|x
angle \equiv |\Phi_{x}
angle \equiv \bigotimes_{i=0}^{n-1} \left(\sum_{y_{j} \in \{0,1\}} e^{2\pi i y_{j} \cdot 0.x_{i} x_{i+1} \cdots} \left| y_{j}
ight) \right)$$

where $0.x_i x_{i+1} \cdots = 2^i x / 2^n \mod 1$

 ϵ -approximate QFT: truncate $0.x_ix_{i+1}\cdots$ after $m \sim O(\log(n/\epsilon))$ bits

The quantum Fourier transform on *n* qubits (dropping normalization):

$$|\operatorname{QFT}|x
angle \equiv |\Phi_{x}
angle \equiv \bigotimes_{i=0}^{n-1} \left(\sum_{y_{j} \in \{0,1\}} e^{2\pi i y_{j} \cdot 0.x_{i} x_{i+1} \cdots} \left| y_{j}
ight) \right)$$

where $0.x_i x_{i+1} \cdots = 2^i x / 2^n \mod 1$

 ϵ -approximate QFT: truncate $0.x_ix_{i+1}\cdots$ after $m \sim O(\log(n/\epsilon))$ bits

Let's do a similar trick, in base $b = 2^m$

QFT, block version

In base
$$b = 2^m$$
 we have $x = \sum_i 2^{mi} X_i$.

QFT, block version

In base
$$b = 2^m$$
 we have $x = \sum_i 2^{mi} X_i$.

$$\mathsf{QFT} \ket{x} \equiv \ket{\Phi_{\mathsf{X}}} = \bigotimes_{i=0}^{n/m-1} [\ket{\Phi_{\mathsf{X}}}]_i \approx \bigotimes_{i=0}^{n/m-1} \left(\sum_{\mathsf{Y}_j=0}^{2^m-1} e^{2\pi i \mathsf{Y}_j \cdot 0.X_i X_{i+1} \cdots} \ket{\mathsf{Y}_j} \right)$$

QFT, block version

In base $b = 2^m$ we have $x = \sum_i 2^{mi} X_i$.

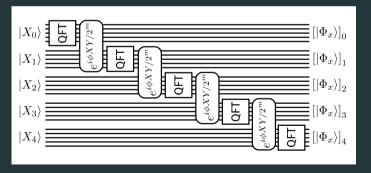
$$\mathsf{QFT} \ket{x} \equiv \ket{\Phi_{\mathsf{X}}} = \bigotimes_{i=0}^{n/m-1} [\ket{\Phi_{\mathsf{X}}}]_{j} \approx \bigotimes_{i=0}^{n/m-1} \left(\sum_{\mathsf{Y}_{j}=0}^{2^{m}-1} e^{2\pi i \mathsf{Y}_{j} \cdot 0.\mathsf{X}_{i} \mathsf{X}_{i+1} \cdots} \ket{\mathsf{Y}_{j}} \right)$$

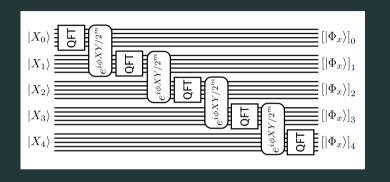
 ϵ -approximate QFT: since $m \sim O(\log(n/\epsilon))$, truncate to $0.X_iX_{i+1}$

In base $b = 2^m$ we have $x = \sum_i 2^{mi} X_i$.

In base $b=2^m$ we have $x=\sum_i 2^{mi}X_i$. With $\phi=2\pi/2^m$:

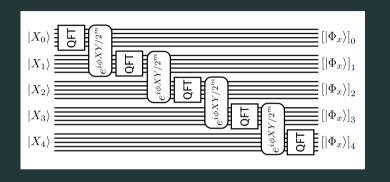
$$\left| \mathsf{QFT} \left| x
ight
angle \equiv \left| \Phi_X
ight
angle pprox igotimes_{i=0}^{n/m-1} \left(\sum_{Y_j=0}^{2^m-1} e^{i\phi(X_i + X_{i+1}/2^m)Y_j} \left| Y_j
ight
angle
ight)$$





Gate count: $O(n \log n)$

Space-time product: $O(n^2)$



Gate count: $\mathcal{O}(n \log n)$

Space-time product: $O(n^2)$

Why are we stuck with linear depth here?

What happens if you apply QFT † to the following (remember $\phi=2\pi/2^m$)

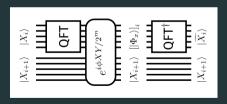
$$\mathsf{QFT}^\dagger \sum_{\mathsf{Y}_j} e^{i\phi \mathsf{X}_i \mathsf{Y}_j} \left| \mathsf{Y}_j \right\rangle = ?$$

What happens if you apply QFT † to the following (remember $\phi=2\pi/2^m$)

$$\mathsf{QFT}^\dagger \sum_{\mathsf{Y}_j} e^{i\phi \mathsf{X}_i \mathsf{Y}_j} \left| \mathsf{Y}_j \right\rangle = \left| \mathsf{X}_i \right\rangle$$

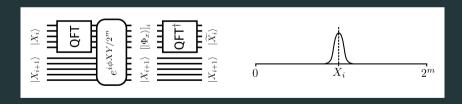
What happens if you apply QFT † to the following (remember $\phi=2\pi/2^m$)

$$\mathsf{QFT}^\dagger \left[\ket{\Phi_\mathsf{x}}
ight]_i = \mathsf{QFT}^\dagger \sum_{\mathsf{Y}_j} e^{i\phi(\mathsf{X}_i + \mathsf{X}_{i+1}/2^m)\mathsf{Y}_j} \ket{\mathsf{Y}_j} = ?$$



What happens if you apply QFT † to the following (remember $\phi=2\pi/2^m$)

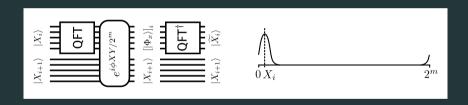
$$\mathsf{QFT}^\dagger \left[\ket{\Phi_\mathsf{X}}
ight]_i = \mathsf{QFT}^\dagger \sum_{\mathsf{Y}_j} e^{i\phi(\mathsf{X}_i + \mathsf{X}_{i+1}/2^m)\mathsf{Y}_j} \ket{\mathsf{Y}_j} = \ket{\widetilde{\mathsf{X}_i}}$$



A subtlety

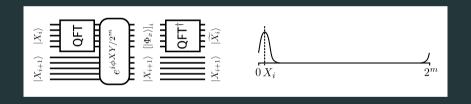
A subtlety

What happens if X_i is too close to 0 (mod 2^m)?



A subtlety

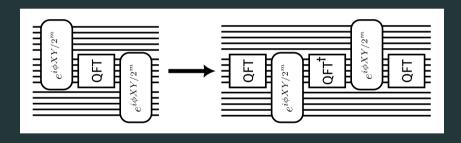
What happens if X_i is too close to 0 (mod 2^m)?



Part of the phase rotation "controlled off" $\left|\widetilde{X_i}\right>$ will be off by 2 m !

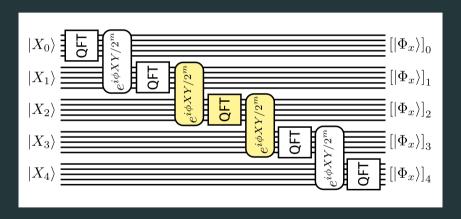
Rearranging gates

Proposed replacement:



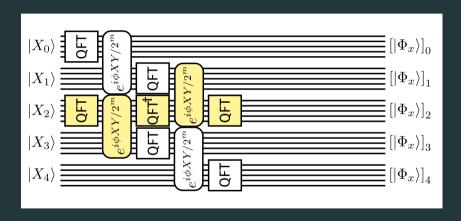
Rearranging gates

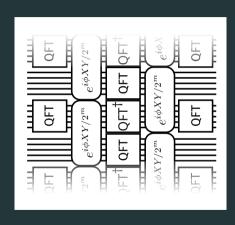
Proposed replacement:

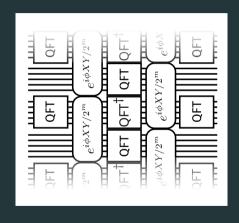


Rearranging gates

Proposed replacement:

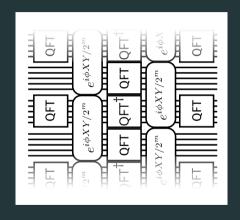






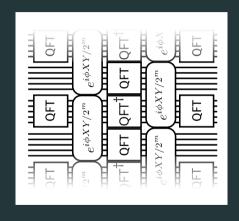
Features:

· 5 layers, each layer has depth $\mathcal{O}(\log n)$



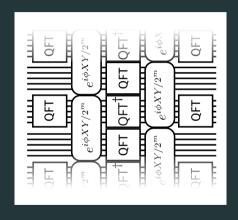
Features:

- · 5 layers, each layer has depth $\mathcal{O}(\log n)$
- No ancilla qubits



Features:

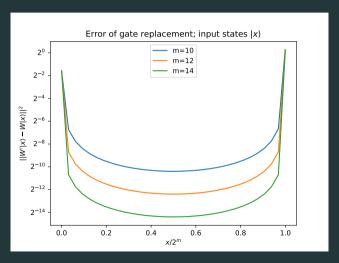
- + 5 layers, each layer has depth $\mathcal{O}(\log n)$
- · No ancilla qubits
- All gates have range at most $\mathcal{O}(\log n)$



Features:

- · 5 layers, each layer has depth $\mathcal{O}(\log n)$
- · No ancilla qubits
- All gates have range at most $\mathcal{O}(\log n)$
- Doesn't give the right answer (sometimes)

We have a good approximation on most basis states, with super nice properties!



We have a good approximation on the vast majority of basis states, with super nice properties!

What should we do with it?

We have a good approximation on the vast majority of basis states, with super nice properties!

What should we do with it?

Use it anyway (on "random" inputs)

We have a good approximation on the vast majority of basis states, with super nice properties!

What should we do with it?

- Use it anyway (on "random" inputs)
- Bootstrap it into a slightly more expensive circuit that approximates QFT well on all basis states

Some things I've worked on

A sublinear space and depth factoring algorithm

For integers $N = P^2Q$: Gate count $\tilde{O}(n)$ Qubits and depth $\tilde{O}(n^{2/3})$

GDKM, S. Ragavan, V. Vaikuntanathan, K. Van Kirk. arXiv:2412.12558

Log-depth "optimistic" QFT with no ancillas

Error bounded by ϵ on all but $O(\epsilon) \cdot 2^n$ basis states

GDKM, J. Blue, T. Bergamaschi, C. Gidney, I. Chuang. arXiv:2505.00701

Fast quantum integer multiplication

 $O(n^{1+\varepsilon})$ gates No ancilla qubits

GDKM, N. Yao. arXiv:2403.18006

Shor's algorithm with:

 $O(n^{2+\varepsilon})$ gates $O(n^{1+\varepsilon})$ depth $2n + O(n/\log n)$ total qubits

Fast quantum multiplication without ancillas

Greg Kahanamoku-Meyer

Norm Yao

Background: fast multiplication

Given two *n*-bit numbers *x* and *y*, write them as "two digit" numbers in base $b = 2^{n/2}$.

$$\begin{array}{c|ccccc}
 & X_1 & X_0 \\
 & Y_1 & Y_0 \\
\hline
 & X_0 &$$

Background: fast multiplication

Given two *n*-bit numbers *x* and *y*, write them as "two digit" numbers in base $b = 2^{n/2}$.

$$xy = x_1y_1b^2 + x_0y_1b + x_1y_0b + x_0y_0$$

Background: fast multiplication

Given two *n*-bit numbers *x* and *y*, write them as "two digit" numbers in base $b = 2^{n/2}$.

$$\begin{array}{c|ccccc}
 & x_1 & x_0 \\
 & y_1 & y_0 \\
\hline
 & x_0y_0 \\
 & x_1y_0 \\
 & x_0y_1 \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

$$xy = x_1y_1b^2 + x_0y_1b + x_1y_0b + x_0y_0$$

Time remains $\mathcal{O}(n^2)$, because $4(n/2)^2 = n^2$

Background: Karatsuba multiplication

$$xy = x_1y_1b^2 + (x_0y_1 + x_1y_0)b + x_0y_0$$

$$xy = x_1y_1b^2 + (x_0y_1 + x_1y_0)b + x_0y_0$$

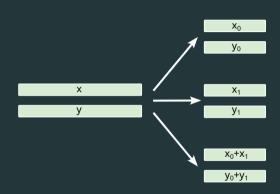
Observation:
$$x_0y_1 + x_1y_0 = (x_1 + x_0)(y_1 + y_0) - x_1y_1 - x_0y_0$$

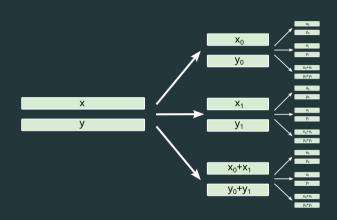
$$xy = x_1y_1b^2 + (x_0y_1 + x_1y_0)b + x_0y_0$$

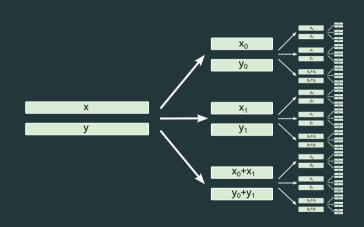
Observation:
$$x_0y_1 + x_1y_0 = (x_1 + x_0)(y_1 + y_0) - x_1y_1 - x_0y_0$$

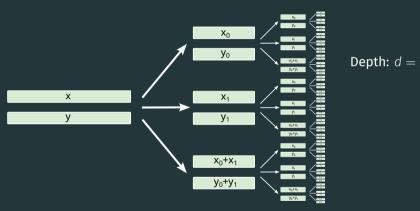
Can compute xy with only three multiplications of size $\log b = n/2$:

- 1. x_1y_1
- 2. x_0y_0
- 3. $(x_1 + x_0)(y_1 + y_0)$

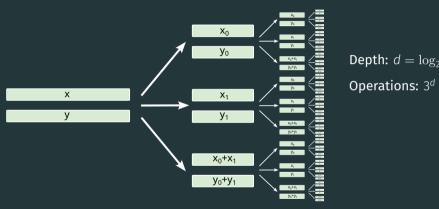




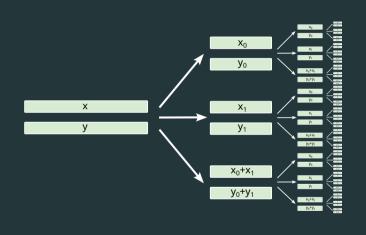




Depth: $d = \log_2 n$



Depth: $d = \log_2 n$



Depth: $d = \log_2 n$

Operations: 3^d

Cost: $\mathcal{O}(n^{\log_2 3}) = \mathcal{O}(n^{1.58\cdots})$

Goal:
$$U(a) |x\rangle |0\rangle = |x\rangle |ax\rangle$$

Goal: Apply phase ϕxz ; x and z are quantum

Goal: Apply phase ϕxz ; x and z are quantum

Karatsuba:

$$xz = 2^{n}x_{1}z_{1} + 2^{n/2}((x_{0} + x_{1})(z_{0} + z_{1}) - x_{0}z_{0} - x_{1}z_{1}) + x_{0}z_{0}$$

Goal: Apply phase ϕxz ; x and z are quantum

Plugging in Karatsuba:

$$\begin{split} \exp{(i\phi xz)} &= \exp{(i\phi 2^n x_1 z_1)} \\ & \cdot \exp{(i\phi x_0 z_0)} \\ & \cdot \exp{\left(i\phi 2^{n/2} ((x_0 + x_1)(z_0 + z_1) - x_0 z_0 - x_1 z_1)\right)} \end{split}$$

Goal: Apply phase ϕxz ; x and z are quantum

Plugging in Karatsuba:

$$\begin{split} \exp{(i\phi xz)} &= \exp{(i\phi 2^n x_1 z_1)} \\ &\quad \cdot \exp{(i\phi x_0 z_0)} \\ &\quad \cdot \exp{\left(i\phi 2^{n/2} ((x_0 + x_1)(z_0 + z_1) - x_0 z_0 - x_1 z_1)\right)} \end{split}$$

How are we supposed to reuse values in the phase?

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

Karatsuba:

$$xz = 2^{n}x_{1}z_{1} + 2^{n/2}((x_{0} + x_{1})(z_{0} + z_{1}) - x_{0}z_{0} - x_{1}z_{1}) + x_{0}z_{0}$$

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

Re-ordering Karatsuba:

$$xz = (2^{n} - 2^{n/2})x_1z_1 + 2^{n/2}(x_0 + x_1)(z_0 + z_1) + (1 - 2^{n/2})x_0z_0$$

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

Plugging in reordered Karatsuba:

$$\exp(i\phi xz) = \exp\left(i\phi(2^{n} - 2^{n/2})x_{1}z_{1}\right)$$

$$\cdot \exp\left(i\phi(1 - 2^{n/2})x_{0}z_{0}\right)$$

$$\cdot \exp\left(i\phi 2^{n/2}(x_{0} + x_{1})(z_{0} + z_{1})\right)$$

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

Plugging in reordered Karatsuba:

$$\exp(i\phi xz) = \exp(i\phi_1 x_1 z_1) \qquad \phi_1 = (2^n - 2^{n/2})\phi$$

$$\cdot \exp(i\phi_2 x_0 z_0) \qquad \phi_2 = (1 - 2^{n/2})\phi$$

$$\cdot \exp(i\phi_3 (x_0 + x_1)(z_0 + z_1)) \qquad \phi_3 = 2^{n/2}\phi$$

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

Plugging in reordered Karatsuba:

$$\begin{split} \exp{(i\phi xz)} &= \exp{(i\phi_1 x_1 z_1)} & \phi_1 &= (2^n - 2^{n/2})\phi \\ & \cdot \exp{(i\phi_2 x_0 z_0)} & \phi_2 &= (1 - 2^{n/2})\phi \\ & \cdot \exp{(i\phi_3 (x_0 + x_1)(z_0 + z_1))} & \phi_3 &= 2^{n/2}\phi \end{split}$$

Each of these has the same structure, but on half as many qubits \rightarrow do it recursively!

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

$$\exp(i\phi xz) = \exp(i\phi_1 x_1 z_1) \qquad \phi_1 = (2^n - 2^{n/2})\phi$$

$$\cdot \exp(i\phi_2 x_0 z_0) \qquad \phi_2 = (1 - 2^{n/2})\phi$$

$$\cdot \exp(i\phi_3 (x_0 + x_1)(z_0 + z_1)) \qquad \phi_3 = 2^{n/2}\phi$$

Recursion relation: T(n) = 3T(n/2)

Goal: Implement PhaseProduct(
$$\phi$$
) $|x\rangle$ $|z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$

$$\exp(i\phi xz) = \exp(i\phi_1 x_1 z_1) \qquad \phi_1 = (2^n - 2^{n/2})\phi$$

$$\cdot \exp(i\phi_2 x_0 z_0) \qquad \phi_2 = (1 - 2^{n/2})\phi$$

$$\cdot \exp(i\phi_3 (x_0 + x_1)(z_0 + z_1)) \qquad \phi_3 = 2^{n/2}\phi$$

Recursion relation: $T(n) = 3T(n/2) \Rightarrow \mathcal{O}(n^{\log_2 3}) = \mathcal{O}(n^{1.58\cdots})$ gates!

Splitting registers $|x\rangle \to |x_1\rangle \, |x_0\rangle$ and $|z\rangle \to |z_1\rangle \, |z_0\rangle$, can immediately do

- $\exp(i\phi_1 x_1 z_1)$
- $\exp\left(i\phi_2x_0z_0\right)$

Splitting registers $|x\rangle \to |x_1\rangle \, |x_0\rangle$ and $|z\rangle \to |z_1\rangle \, |z_0\rangle$, can immediately do

- $\exp(i\phi_1 X_1 Z_1)$
- $\exp(i\phi_2x_0z_0)$

What about $\exp(i\phi_3(x_0 + x_1)(z_0 + z_1))$?

Splitting registers $|x\rangle \to |x_1\rangle |x_0\rangle$ and $|z\rangle \to |z_1\rangle |z_0\rangle$, can immediately do

- $\exp(i\phi_1X_1Z_1)$
- $\exp(i\phi_2x_0z_0)$

What about
$$\exp(i\phi_3(x_0 + x_1)(z_0 + z_1))$$
?

Use quantum addition circuits.

Splitting registers $|x\rangle \to |x_1\rangle |x_0\rangle$ and $|z\rangle \to |z_1\rangle |z_0\rangle$, can immediately do

- $\exp(i\phi_1 X_1 Z_1)$
- $\exp(i\phi_2x_0z_0)$

What about
$$\exp(i\phi_3(x_0 + x_1)(z_0 + z_1))$$
?

Use quantum addition circuits.

But, addition is reversible \rightarrow do it *in-place*! E.g. $|x_1\rangle$ $|x_0\rangle$ \rightarrow $|x_1\rangle$ $|x_0+x_1\rangle$

Splitting registers $|x\rangle \to |x_1\rangle |x_0\rangle$ and $|z\rangle \to |z_1\rangle |z_0\rangle$, can immediately do

- $\exp(i\phi_1X_1Z_1)$
- $\exp(i\phi_2x_0z_0)$

What about
$$\exp(i\phi_3(x_0 + x_1)(z_0 + z_1))$$
?

Use quantum addition circuits.

But, addition is reversible \rightarrow do it *in-place*! E.g. $|x_1\rangle |x_0\rangle \rightarrow |x_1\rangle |x_0+x_1\rangle$

With a few tricks, can use zero ancillas.

Making it go faster

Karatsuba

Multiply n-bit numbers via 3 multiplications of size n/2

 $\mathcal{O}(n^{\log_2 3})$ gates

Making it go faster

Karatsuba

Multiply n-bit numbers via 3 multiplications of size n/2

 $\mathcal{O}(n^{\log_2 3})$ gates

Toom-Cook

Multiply n-bit numbers via 2k - 1 multiplications of size n/k

 $\mathcal{O}(n^{\log_k(2k-1)})$ gates

Complexity vs. k

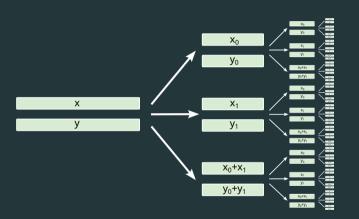
Toom-Cook has asymptotic complexity $\mathcal{O}(n^{\log_k(2k-1)})$

Complexity vs. k

Toom-Cook has asymptotic complexity $\mathcal{O}(n^{\log_k(2k-1)})$

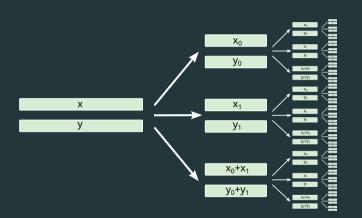
Gate count
$\mathcal{O}(n^2)$
$\mathcal{O}(n^{1.58\cdots})$
$\mathcal{O}(n^{1.46\cdots})$
$O(n^{1.40})$
:

Parallelization is natural.

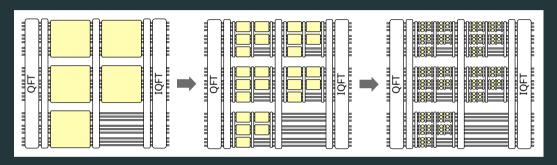


Parallelization is natural.

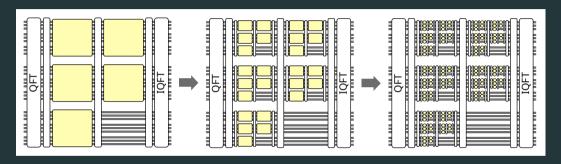
We have *k* sub-registers to work with—can do *k* sub-products in parallel.



k = 3:



k = 3:



Depth is $\mathcal{O}(n^{\epsilon})$ where $\epsilon = \log_k 2$, using $\mathcal{O}(n/\log n)$ ancillas.

Some things I've worked on

A sublinear space and depth factoring algorithm

For integers $N = P^2Q$: Gate count $\tilde{O}(n)$ Qubits and depth $\tilde{O}(n^{2/3})$

GDKM, S. Ragavan, V. Vaikuntanathan, K. Van Kirk. arXiv:2412.12558

Log-depth "optimistic" QFT with no ancillas

Error bounded by ϵ on all but $O(\epsilon) \cdot 2^n$ basis states

GDKM, J. Blue, T. Bergamaschi, C. Gidney, I. Chuang. arXiv:2505.00701

Fast quantum integer multiplication

 $O(n^{1+\varepsilon})$ gates No ancilla qubits

GDKM, N. Yao. arXiv:2403.18006

Shor's algorithm with:

 $O(n^{2+\varepsilon})$ gates $O(n^{1+\varepsilon})$ depth $2n + O(n/\log n)$ total qubits