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Can the reader say what two numbers
multiplied together will produce the
number 8,616,460,799?

I think it unlikely that anyone but
myself will ever know.

-William Stanley Jevons, 1874
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| want to live in Future Al
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Other less important reasons:

- Factoring makes a really straightforward efficiently-verifiable proof of quantumness
- The math is really fun
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What should we optimize for?

. _?019 Greg Fact: Logical error rate is exponential with
) code distance.

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

Imagine two algorithms, A and B.
B uses half as many qubits as A, but 10
times as many gates.

2025 Greg Which will we be able to run first?

AR "We will need quantum
8 error correction to do any

m nontrivial cryptography."
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Hot take: Right now, we should only really care about logical qubit count. 4
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Should we ever care about gate count and depth?

We should optimize for depth if: We should optimize for gate count if:

We have very good devices and we care We have pretty good devices that are limited
about wall time. by magic production.
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Shor’s algorithm

Find some f,(x) w/ Generate Measure f (x),
period T, where poly(T) yielding

QFT on x register,
measure,

postprocess

T can be used Z [x) lfN(X» superposition ostproce

to find factors over a coset

x=0

Function: fy(x) = a* mod N Period: T = ordy(a) ~ O(N)
Let n = [log N]:

Qubit cost Gate/depth cost
- Input |x): 2n qubits - Cost of |fy(x)): 772
- Output |fy(x)): n qubits
- Workspace: ???
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Key observation (Zalka '98, and others):

a* mod N = H ¢ mod N

I

where ¢; = a2 mod N. Reuse one qubit for all bits of x.

Key operation: |x;) |w) — |x;) |c/'w)

Qubit cost Gate/depth cost
- Input |x): 1 qubit (reused) - Cost of |fy(x)):
- Output |fy(x)): n qubits - 2n multiplications

- Workspace: mult. workspace

[Gidney + Ekera '19]: Factoring 2048-bit N = pg in 8 hours with 20 million physical qubits 8
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Reducing output to 1 qubit: what if fy(x) : {0,1}* — {0,1}?

Find some f,(x) w/ Generate Measure f (x),
period T, where poly(T) yielding
T can be used Z | x) |fN(X» superposition

to find factors over a coset

x=0

Is this going to actually help (or even work)?

- There could be smaller periods than T [Hales + Hallgren '00]
- Need ~ log T qubits for input
- Need workspace to compute fy(x)

QFT on x register,
measure,
postprocess
tofind T
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Avoid periods smaller than T

[May + Schlieper '22]: For some hash function h : {0,1}" — {0,1}, use
fn(xX) = h(a* mod N)

Qubit cost Gate/depth cost
- Input |x): 2n qubits - Cost of |fu(X)):
- Output |fy(x)): 1 qubit - 2n multiplications

- Workspace: O(n) qubits



Reduce period, reduce qubits for input

[Ekera + Hastad "17]: Can factor N = pq via discrete log with period O(v/N)

Qubit cost Gate/depth cost
- Input |x): n/2 qubits - Cost of |fy(x)):
- Output [fy(x)): 1 qubit - n/2 multiplications

- Workspace: O(n) qubits

1



Reduce workspace

[Chevignard et al. '24]: Used residue number system to cut workspace to ~ O(log n) qubits

Qubit cost Gate/depth cost
- Input |x): n/2 qubits - Cost of |fy(x)):
- Output [fy(x)): 1 qubit - ~ 2 trillion Toffoli gates

- Workspace: O(log n) qubits



Putting it all together

[Gidney last week]: Arithmetic + fault tolerance optimizations

Factor 2048-bit N = pg using < 1 million physical qubits in ~ 1 week
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A sublinear space and depth
factoring algorithm
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Qubits and depth 0(n?/3)

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558
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A sublinear space and depth Log-depth "optimistic" QFT
factoring algorithm with no ancillas
For integers N = P2Q:
Gate count O(n) Error bounded by € on all but
Qubits and depth O(n?/*) O(€) - 2" basis states

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Fast quantum
integer multiplication

0(n"*¢) gates
No ancilla qubits

GDKM, J. Blue, T. Bergamaschi, C. Gidney, .
1. Chuang. arXiv:2505.00701 GDKM, N. Yao. arXiv:2403.18006

Shor's algorithm with:

0(n%*¢) gates
0(n"*¢) depth
2n + 0(n/ log n) total qubits

14



Factoring in sublinear space and depth

Greg Seyoon Vinod Katherine
Kahanamoku-Meyer Ragavan Vaikuntanathan Van Kirk
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Set m = O(n??3) for the cheapest quantum circuit classically as hard as RSA



Asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with log g = m = 0(n?/?)

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(n%/3) Gates: O(n)
Depth: O(n) Depth: O(n?/?)

Space: O(n?/3) Space: O(n?/3)



Reducing output to 1 qubit: fy(x) : {0,1}* — {0,1}

Find some f,(x) w/ Generate Measure f(x),
period T, where poly(T) yielding
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- Small period T
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- Low workspace to compute fy(x)
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measure,
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Some number theory

Jacobi symbol

For a composite number N = [T, p;:
X X
®-1()

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?
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Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?

For N = p%g:

H-6)G)-¢)

Period is g—exactly what we need!!

23



Reducing output to 1 qubit: fy(x) : {0,1}* — {0,1}

Find some f,(x) w/ Generate Measure f(x),
period T, where poly(T) yielding
T can be used Z [ x) |fN(X)) superposition
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x=0

Things we need for low qubit count:
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Avoiding smaller periods

Need to compute the Fourier transform of the Jacobi
symbol.
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Avoiding smaller periods

Need to compute the Fourier transform of the Jacobi
symbol.

_
Carl Friedrich Gauss,
early 1800s: this function has
the ideal Fourier spectrum for
us!
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Reducing output to 1 qubit: fy(x) : {0,1}* — {0,1}

Find some f,(x) w/ Generate Measure f(x),
period T, where poly(T) yielding
T can be used Z [ x) |fN(X)) superposition

to find factors over a coset

x=0

Things we need for low qubit count:

v' Small period T
v Avoid smaller periods than T
- Low workspace to compute fy(x)

QFT on x register,
measure,
postprocess
tofind T
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People knew this!

“An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Li, Peng, Du, Suter. Nature Scientific Reports, 2012.

Decomposing N — P?>Q via Jacobi symbol was known in the literature a decade ago!

Our contributions:

- Jacobi symbol can be computed via standard circuits, using O(n) space

- When quantum input is small, extremely efficient quantum circuits exist!

- Quantum period finding yields Q exactly if we take a superposition x € [0, N — 1]

- With superposition only to poly(Q), we still succeed — x needs only O(log Q) qubits

27



Computing the Jacobi symbol

Goal: Compute (%)

28



Computing the Jacobi symbol

Goal: Compute (%)

(g) € {-1,0,1} (1)

28



Computing the Jacobi symbol

Goal: Compute |x) — (%) [x)

(%) e{-1,1} (1)

28



Computing the Jacobi symbol

Goal: Compute |x) — (%) [x)

(%) e{-1,1} (1)

Recall: N is classical, n bits; |x) is quantum, m qubits—and potentially m < n.

28



Computing the Jacobi symbol

Goal: Compute |x) — (%) [x)

(%) e{-1,1} (1)

Recall: N is classical, n bits; |x) is quantum, m qubits—and potentially m < n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

28



Computing the Jacobi symbol

Goal: Compute |x) — (%) [x)

(%) e{-1,1} (1)

Recall: N is classical, n bits; |x) is quantum, m qubits—and potentially m < n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

28



Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

classical B quantum

29



Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

classical B quantum

29



Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

s — )

classical B quantum m zeros

29



Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

s | N')

classical B quantum m zeros

29



Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

s — )

classical B quantum m zeros

29



Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

e |N')

classical B quantum m zeros

29



Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

e |N')

classical B quantum m zeros

29



Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

e |N')

classical B quantum m zeros

29



Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

e |N')

classical B quantum m zeros

29



Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

e |N')

classical B quantum m zeros

29



Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

Now with two length-m inputs,
standard circuits for (37) have depth and qubits O(m)

29



Reducing output to 1 qubit: fy(x) : {0,1}* — {0,1}

Find some f,(x) w/ Generate Measure f(x),
period T, where poly(T) yielding
T can be used Z [ x) |fN(X)) superposition

to find factors over a coset

x=0

Things we need for low qubit count:

v' Small period T
v Avoid smaller periods than T
v Low workspace to compute fy(x)

QFT on x register,
measure,
postprocess
tofind T
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Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with logg = m = 0(n*/?)
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Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with logg = m = 0(n*/?)

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(nm) Gates: O(n)

Depth: O(n + m) Depth: O(n/m + m)
Space: O(m) Space: O(m)

Space ~ 2m seems achievable, m ~ 300 seems classically hard.
Classically-hard factoring with a few hundred qubits?
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factoring algorithm with no ancillas
For integers N = P2Q:
Gate count O(n) Error bounded by € on all but
Qubits and depth O(n?/*) O(€) - 2" basis states

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Fast quantum
integer multiplication

0(n"*¢) gates
No ancilla qubits

GDKM, J. Blue, T. Bergamaschi, C. Gidney, .
1. Chuang. arXiv:2505.00701 GDKM, N. Yao. arXiv:2403.18006

Shor's algorithm with:

0(n%*¢) gates
0(n"*¢) depth
2n + 0(n/ log n) total qubits
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Multiplication on quantum computers

Goal: Implement Uecxq(a) |X) |0) = |x) |ax), for n-bit a and x
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Multiplication on quantum computers

Goal: Implement Uecxq(a) |X) |0) = |x) |ax), for n-bit a and x

[Draper '00]: Arithmetic in Fourier space

QFTfax) = 3 exp <2”2’ffxz ) 12)

z
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Multiplication on quantum computers

Goal: Implement Uecxq(a) |X) |0) = |x) |ax), for n-bit a and x

[Draper '00]: Arithmetic in Fourier space

QFT [ax) = 3 exp <2”2’ij2 ) 12)

z

Plan:
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Multiplication on quantum computers

Goal: Implement Uecxq(a) |X) |0) = |x) |ax), for n-bit a and x

[Draper '00]: Arithmetic in Fourier space

QFT [ax) = 3 exp <2”2’ij2 ) 12)

z

Plan: 1) Generate |x) 3", |2)
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Multiplication on quantum computers

Goal: Implement Uecxq(a) |X) |0) = |x) |ax), for n-bit a and x

[Draper '00]: Arithmetic in Fourier space

QFT |ax) = Ze <27HGXZ) 12)

Plan: 1) Generate |x) 3, |z), 2) apply a phase rotation of ,3) apply QFT ™"

[GDKM, Yao "24]: Can apply phase using:
O(n'*¢) gates O(n¢) depth O(n/log n) ancillas

33



A log-depth "optimistic" QFT with no ancillas

;i & £
, 4 Ve =

Greg John Thiago Craig Ike
Kahanamoku-Meyer Blue Bergamaschi Gidney Chuang
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Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):

2"—1
QFT |X) = |®x) = Z 2™/ |y
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Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):

n—1

QFT |x) = |®x) = ® (O) | 20X |1>>

i=0

where 0.xXi41 - - = 2'x/2" mod 1
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Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):
n—1

QFT ) = |8, = Q) <o> JERTT. |1>>

i=0

where 0.xXi41 - - = 2'x/2" mod 1

e-approximate QFT: truncate 0.x;Xjyq - - - after m ~ O(log(n/e)) bits
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Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):

n—1
QFT ) = ) ®< > |y>)

i=0 \y;€{0,1}

where 0.xXi41 - -- = 2'x/2" mod 1

e-approximate QFT: truncate 0.xiXjy; - - - after m ~ O(log(n/e)) bits
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Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):

n—1
T =80 =@ 3 e y)
i=0 \y;€{0,1}

where 0.xXi41 - -- = 2'x/2" mod 1

e-approximate QFT: truncate 0.xiXjy; - - - after m ~ O(log(n/e)) bits

Let's do a similar trick, in base b = 2™

35



QFT, block version

In base b = 2" we have x = Y, 2™X;.
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QFT, block version

In base b = 2" we have x = Y, 2™X;.
n/m-—1 n/m—=1 [2M—1

QFT ‘X> = ‘CI)X> = ® H(I)X>]j ~ ® Z e27riYJ-O.X,X,+1... |Yj>
Y/:O

36



QFT, block version

In base b = 2" we have x = Y, 2™X;.

n/m-—1 n/m—=1 [2M—1

QFT ‘X> = ‘CI)X> = ® H(I)X>]j ~ ® Z e27ri‘/J-O.X,X,+1.,. |Yj>
Y/:O

i=0 i=0

e-approximate QFT: since m ~ O(log(n/e)), truncate to 0.X;Xj 4
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Approximate QFT, block version

In base b = 2™ we have x = 3, 2™X;.
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Approximate QFT, block version

In base b = 2™ we have x = Y_;2™X;. With ¢ = 27r/2™:

n/m—1 [2Mm—1q

|®X> I~ ® Z e[(/)(XA'f'XHH/zm)YI ‘Y/>

i=0 \Y=0

QFT |x)
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Approximate QFT, block version

Gate count: O(nlogn) Space-time product: O(n?)
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Approximate QFT, block version

Gate count: O(nlogn) Space-time product: O(n?)
Why are we stuck with linear depth here?
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How to do better than linear depth

What happens if you apply QFT' to the following (remember ¢ = 27 /2™)

QFTT) e |v;) =2

Yj
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How to do better than linear depth

What happens if you apply QFT' to the following (remember ¢ = 27 /2™)

QFTT " e |v;) = |X;)

Yj
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How to do better than linear depth

What happens if you apply QFT' to the following (remember ¢ = 27 /2™)

QFTT [|8,)]; = QFTT Y~ e/ #UirtXiaa/20Y |y =7
YI
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How to do better than linear depth

What happens if you apply QFT' to the following (remember ¢ = 2m/2M)

QFT [j@,)]; = QFT' Y et /2% [y — I57)

39



A subtlety
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A subtlety

What happens if X; is too close to 0 (mod 2™)?
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A subtlety

What happens if X; is too close to 0 (mod 2™)?

Part of the phase rotation “controlled off” ‘)?,> will be off by 2™!
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Looking a bit closer
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Looking a bit closer

Features:

- 5 layers, each layer has depth O(log n)
- No ancilla qubits

- All gates have range at most O(log n)
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Looking a bit closer

Features:

- 5 layers, each layer has depth O(log n)

- No ancilla qubits

- All gates have range at most O(log n)

- Doesn’t give the right answer
(sometimes)
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“Optimistic” QFT

We have a good approximation on basis states, with super nice properties!

Error of gate replacement; input states |x)
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“Optimistic” QFT

We have a good approximation on the vast majority of basis states,
with super nice properties!

What should we do with it?
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“Optimistic” QFT

We have a good approximation on the vast majority of basis states,
with super nice properties!

What should we do with it?

- Use it anyway (on “random” inputs)

- Bootstrap it into a slightly more expensive circuit that
approximates QFT well on all basis states

A



Some things I've worked on

A sublinear space and depth Log-depth "optimistic" QFT
factoring algorithm with no ancillas
For integers N = P2Q:
Gate count O(n) Error bounded by € on all but
Qubits and depth O(n?/*) O(€) - 2" basis states

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Fast quantum
integer multiplication

0(n"*¢) gates
No ancilla qubits

GDKM, J. Blue, T. Bergamaschi, C. Gidney, .
1. Chuang. arXiv:2505.00701 GDKM, N. Yao. arXiv:2403.18006

Shor's algorithm with:

0(n%*¢) gates
0(n"*¢) depth
2n + 0(n/ log n) total qubits
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Fast quantum multiplication without ancillas

Greg
Kahanamoku-Meyer




Background: fast multiplication

Given two n-bit numbers x and y, write them as "two digit’ numbers in base b = 2"/2.

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4
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Background: fast multiplication

Given two n-bit numbers x and y, write them as "two digit’ numbers in base b = 2"/2.

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4

Xy = X1y1b? + Xoy1b + x1y0b + Xoyo
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Background: fast multiplication

Given two n-bit numbers x and y, write them as "two digit’ numbers in base b = 2"/2.

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4

Xy = X1y1b? + Xoy1b + x1y0b + Xoyo

Time remains O(n?), because 4(n/2)? = n?

47



Background: Karatsuba multiplication

Xy = x1y1b? + (Xoy1 + X1Yo)b + XoVo
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Background: Karatsuba multiplication

Xy = x1y1b? + (Xoy1 + X1Yo)b + XoVo

Observation: Xoy1 + X1yo = (X1 + Xo) (V1 + Yo) — X1y1 — XoYo
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Background: Karatsuba multiplication

Xy = x1y1b? + (Xoy1 + X1Yo)b + XoVo

Observation: Xoy1 + X1yo = (X1 + Xo) (V1 + Yo) — X1y1 — XoYo

Can compute xy with only multiplications of size logb = n/2:

1. X1y
2. XoYo
3. (X1 +Xo) (1 + Vo)

48



Background: Karatsuba multiplication
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Background: Karatsuba multiplication
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Background: Karatsuba multiplication
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Depth: d = log, n

49



Background: Karatsuba multiplication
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Depth: d = log, n

Operations: 3¢
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Background: Karatsuba multiplication

7N

ZINC /NG /INC /NG AN /N ZING AN /N

Depth: d = log, n

Operations: 3¢

H
= E9 o S

/1\

Cost: O(n'°&23) = O(n'8)
/
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Fast classical-quantum multiplication

Goal: U(a) [x) |0) = |x) |ax)
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Fast classical-quantum multiplication

Goal: Apply phase ¢xz; x and z are quantum
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Fast classical-quantum multiplication

Goal: Apply phase ¢xz; x and z are quantum

Karatsuba:
Xz = 2"x121 4 2" ((Xo + X1) (20 + 21) — XoZo — X1Z1) + XoZo
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Fast classical-quantum multiplication

Goal: Apply phase ¢xz; x and z are quantum

Plugging in Karatsuba:

exp (igpxz) = exp (Ip2"x121)
- exp (i¢XoZo)

- exp (i¢>2”/2((xo + x1)(2o + 21) — XoZo — qu1))
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Fast classical-quantum multiplication

Goal: Apply phase ¢xz; x and z are quantum

Plugging in Karatsuba:

exp (igpxz) = exp (Ip2"x121)
- exp (i¢XoZo)

- exp (i¢>2”/2((xo + x1)(2o + 21) — XoZo — qu1))

How are we supposed to values in the phase?

50



Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

Karatsuba:
Xz = 2"x121 + 2" ((Xo + X1) (20 + Z1) — XoZo — X121) + XoZo
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Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

Re-ordering Karatsuba:

XZ = (2” — 2n/2)X121 aF Zn/z(Xo aF X1)(Zo aF 21) aF (1 = 2n/2)X0Zo
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Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢xz) |X) |z)

Plugging in reordered Karatsuba:
exp (igxz) = exp (i</>(2” _ 2”/2)qu1)
- exp (i¢(1 — 2”/2)ono>

- exp <i¢2n/2(Xo + X1)(Z0 +Z1))
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Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

Plugging in reordered Karatsuba:

exp (igxz) =exp (igxaz7) ¢ = (2" —2"%)¢
- exp (ip2X0Zo) ¢ =(1-2"7)¢
-exp (Ig3(Xo + X1)(20 + 1)) ¢3 =2"%g
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Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

Plugging in reordered Karatsuba:

exp (igxz) =exp (igxaz7) ¢ = (2" —2"%)¢
- exp (ip2X0Zo) ¢ =(1-2"7)¢
-exp (Ig3(Xo + X1)(20 + 1)) ¢3 =2"%g

Each of these has the same structure, but on half as many qubits — do it recursively!
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Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

exp (igxz) =exp (igxaz7) P = (2" —2"%)¢
- exp (I¢2X0Zo) ¢ =(1-2"7)¢
- exp (i¢3(X0 +X1)(ZO +Z1)) 3 = 2”/2¢

Recursion relation: T(n) =3T(n/2)
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Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

exp (igxz) =exp (igxaz7) P = (2" —2"%)¢
- exp (I¢2X0Zo) ¢ =(1-2"7)¢
- exp (i¢3(X0 +X1)(ZO +Z1)) 3 = 2”/2¢

Recursion relation: T(n) = 3T(n/2) = O(n'°&:3) = O(n'*%) gates!

52



How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z1) |z0), can immediately do

* exp (ig1x1z1)

* exp (IXo2o)
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What about exp (I¢3(Xo + X1)(20 + 27))?

Use quantum addition circuits.
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How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z1) |z0), can immediately do

* exp (i¢51X1Z1)

* exp (IXo2o)

What about exp (I¢3(Xo + X1)(20 + 27))?

Use quantum addition circuits.

But, addition is reversible — do it in-place! E.g. |x1) [Xo) — |X1) |Xo + X1)

With a few tricks, can use ancillas.
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Making it go faster

Karatsuba

Multiply n-bit numbers via
3 multiplications of size n/2

O(n'°e23) gates
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Making it go faster

Karatsuba

Multiply n-bit numbers via
3 multiplications of size n/2

O(n'°e23) gates

Toom-Cook

Multiply n-bit numbers via
2R — 1 multiplications of size n/k

O(n's:(k=N) gates
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Complexity vs. k

Toom-Cook has asymptotic complexity O(n'09x(2k=1))
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Toom-Cook has asymptotic complexity O(n'09x(2k=1))

Algorithm | Gate count

Schoolbook O(n?)
k=2 O(n'8)
k=3 O(n'46)
k=4 O(rﬂ 40

Complexity vs. k
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Depth is O(n€) where ¢ = logy, 2, using @(n/log n) ancillas.
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Some things I've worked on

A sublinear space and depth Log-depth "optimistic" QFT
factoring algorithm with no ancillas
For integers N = P2Q:
Gate count O(n) Error bounded by € on all but
Qubits and depth O(n?/*) O(€) - 2" basis states

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Fast quantum
integer multiplication

0(n"*¢) gates
No ancilla qubits

GDKM, J. Blue, T. Bergamaschi, C. Gidney, .
1. Chuang. arXiv:2505.00701 GDKM, N. Yao. arXiv:2403.18006

Shor's algorithm with:

0(n%*¢) gates
0(n"*¢) depth
2n + 0(n/ log n) total qubits
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