Recent advances in quantum factoring

Greg Kahanamoku-Meyer

May 26, 2025

Can the reader say what two numbers
multiplied together will produce the
number 8,616,460,799?

I think it unlikely that anyone but
myself will ever know.

-William Stanley Jevons, 1874

Why work on factoring?

Why work on factoring?

Noisy qubits needed to factor 2048-bit RSA:
[Gidney + Ekera "19] ~ 20 million

Why work on factoring?

Noisy qubits needed to factor 2048-bit RSA:
[Gidney + Ekera "19] ~ 20 million [Gidney last week] < 1 million

Why work on factoring?

Noisy qubits needed to factor 2048-bit RSA:
[Gidney + Ekera "19] ~ 20 million [Gidney last week] < 1 million

Two hypothetical futures:

Why work on factoring?

Noisy qubits needed to factor 2048-bit RSA:
[Gidney + Ekera "19] ~ 20 million [Gidney last week] < 1 million

Two hypothetical futures:
Future A
2027: Circuit discovered needing
only 50,000 qubits

2032: Device with 50,000 qubits constructed

Why work on factoring?

Noisy qubits needed to factor 2048-bit RSA:
[Gidney + Ekera "19] ~ 20 million [Gidney last week] < 1 million

Two hypothetical futures:

Future A Future B

2027: Circuit discovered needing 2032: Device with 50,000 qubits constructed

only 50,000 qubits
2033: Circuit discovered needing

2032: Device with 50,000 qubits constructed only 50,000 qubits

Why work on factoring?

Noisy qubits needed to factor 2048-bit RSA:
[Gidney + Ekera "19] ~ 20 million [Gidney last week] < 1 million

Two hypothetical futures:
Future A Future B

2027: Circuit discovered needing 2032: Device with 50,000 qubits constructed

only 50,000 qubits
2033: Circuit discovered needing

2032: Device with 50,000 qubits constructed only 50,000 qubits

| want to live in Future Al

Why work on factoring?

Other less important reasons:

Why work on factoring?

Other less important reasons:

- Factoring makes a really straightforward efficiently-verifiable proof of quantumness

Why work on factoring?

Other less important reasons:

- Factoring makes a really straightforward efficiently-verifiable proof of quantumness
- The math is really fun

What should we optimize for?

What should we optimize for?

2019 Greg

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

What should we optimize for?

2019 Greg

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

2025 Greg

AA0 "Wewill need quantum
< error correction to do any
h nontrivial cryptography."

é‘ LSS ki ™/}

What should we optimize for?

. ‘2019 Greg Fact: Logical error rate is exponential with

code distance.

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

2025 Greg

AA0 "Wewill need quantum
< error correction to do any
h nontrivial cryptography."

é‘ LSS ki ™/}

What s d we optimize for?

5 “2019 Greg Fact: Logical error rate is exponential with
' code distance.

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

Imagine two algorithms, A and B.
B uses half as many qubits as A, but 10
times as many gates.

2025 Greg Which will we be able to run first?

AA0 "Wewill need quantum
< error correction to do any
h nontrivial cryptography."

é‘ LSS ki ™/}

What s d we optimize for?

2019 Greg

Fact: Logical error rate is exponential with
code distance.

"Let's make a proof of
quantumness so efficient we

can run it on physical Imagine two algorithms, A and B.

B uses half as many qubits as A, but 10

H |l|
Py times as many gates.
2025 Greg Which will we be able to run first?
ﬁ , "We will need quantum With some set number of physical qubits
= error correction to do any below EC threshold, can double code
s nontrivial cryptography." distance if we use algorithm B---
& Ll l% exponential decrease in logical error rate!

What should we optimize for?

. _?019 Greg Fact: Logical error rate is exponential with
) code distance.

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

Imagine two algorithms, A and B.
B uses half as many qubits as A, but 10
times as many gates.

2025 Greg Which will we be able to run first?

AR "We will need quantum
8 error correction to do any

m nontrivial cryptography."

é JE PN /)

Hot take: Right now, we should only really care about logical qubit count. 4

Should we ever care about gate count and depth?

Should we ever care about gate count and depth?

We should optimize for depth if:

We have very good devices and we care
about wall time.

Should we ever care about gate count and depth?

We should optimize for depth if: We should optimize for gate count if:

We have very good devices and we care We have pretty good devices that are limited
about wall time. by magic production.

All (poly-time) quantum factoring algorithms: period finding

Find some f,(x) w/
period T, where
T can be used
to find factors

All (poly-time) quantum factoring algorithms: period finding

Find some f,(x) w/ Generate
period T, where poly(T)

T can be used Z [x) 1 £y (X))

to find factors frar]

All (poly-time) quantum factoring algorithms: period finding

Find some f,(x) w/ Generate Measure f(x),
period T, where poly(T) yielding
T can be used Z | x) |fN(X)) superposition

to find factors over a coset

x=0

All (poly-time) quantum factoring algorithms: period finding

Find some f,(x) w/ Generate Measure f(x), QFT on x register,
period T, where poly(T) yielding measure,
T can be used Z | x) |fN(X)) superposition postprocess

to find factors over a coset tofind T

x=0

All (poly-time) quantum factoring algorithms: period finding

Find some f,(x) w/ Generate Measure f(x), QFT on x register,
period T, where poly(T) yielding measure,
T can be used Z | x) |fN(X)) superposition postprocess

to find factors over a coset tofind T

x=0

Qubit cost
- Input |x)
- Output [fu(x))
- Workspace

All (poly-time) quantum factoring algorithms: period finding

Find some f,(x) w/ Generate Measure f(x), QFT on x register,
period T, where poly(T) yielding measure,
T can be used Z | x) |fN(X)) superposition postprocess

to find factors over a coset to find T

x=0

Qubit cost Gate/depth cost
- Input |x) - Cost of |fu(x))
- Output [fu(x))
- Workspace

All (poly-time) quantum factoring algorithms: period finding

Find some f,(x) w/ Generate Measure f(x), QFT on x register,
period T, where poly(T) yielding measure,
T can be used Z | x) |fN(X)) superposition postprocess

to find factors over a coset to find T

x=0

Qubit cost Gate/depth cost
- Input |x): O(log T) qubits - Cost of |fu(x))
- Output [fu(x))
- Workspace

All (poly-time) quantum factoring algorithms: period finding

Find some f,(x) w/ Generate Measure f(x), QFT on x register,
period T, where poly(T) yielding measure,
T can be used Z | x) |fN(X)) superposition postprocess

to find factors over a coset to find T

x=0

Qubit cost Gate/depth cost
- Input |x): O(log T) qubits - Cost of |fy(x))
- Output |fy(x)): O(log T) qubits

- Workspace

All (poly-time) quantum factoring algorithms: period finding

Find some f,(x) w/ Generate Measure f(x), QFT on x register,
period T, where poly(T) yielding measure,
T can be used Z | x) |fN(X)) superposition postprocess

to find factors over a coset to find T

x=0

Qubit cost Gate/depth cost
- Input |x): O(log T) qubits - Cost of |fy(x)): ???
- Output |fy(x)): O(log T) qubits
- Workspace: ???

Find some f,(x) w/ Generate Measure f (x),
period T, where poly(T) yielding

QFT on x register,
measure,

T can be used Z %) 1 £, (X)) superposition postprocess

tofind T

to find factors over a coset

x=0

Function: fy(x) = a* mod N Period: T = ordy(a) ~ O(N)

Shor’s algorithm

Find some f,(x) w/ Generate Measure f (x),
period T, where poly(T) yielding

QFT on x register,
measure,

postprocess

T can be used Z [x) lfN(X» superposition ostproce

to find factors over a coset

x=0

Function: fy(x) = a* mod N Period: T = ordy(a) ~ O(N)
Let n = [log N]:

Qubit cost Gate/depth cost
- Input |x): 2n qubits - Cost of |fy(x)): 772
- Output |fy(x)): n qubits
- Workspace: ???

Reducing input to 1 (reused) qubit

Key observation (Zalka '98, and others):

a* mod N = H ¢ mod N

I

where ¢; = a2 mod N.

Reducing input to 1 (reused) qubit

Key observation (Zalka '98, and others):

a* mod N = H ¢ mod N

I

where ¢; = a2 mod N. Reuse one qubit for all bits of x.

Reducing input to 1 (reused) qubit

Key observation (Zalka '98, and others):

a* mod N = H ¢ mod N

I

where ¢; = a2 mod N. Reuse one qubit for all bits of x.

Key operation: |x;) |w) — |x;) |c/'w)

Reducing input to 1 (reused) qubit

Key observation (Zalka '98, and others):

a* mod N = H ¢ mod N

I

where ¢; = a2 mod N. Reuse one qubit for all bits of x.

Key operation: |x;) |w) — |x;) |c/'w)

Qubit cost Gate/depth cost
- Input |x): 1 qubit (reused) - Cost of |fy(x)):
- Output |fy(x)): n qubits - 2n multiplications

- Workspace: mult. workspace

Reducing input to 1 (reused) qubit

Key observation (Zalka '98, and others):

a* mod N = H ¢ mod N

I

where ¢; = a2 mod N. Reuse one qubit for all bits of x.

Key operation: |x;) |w) — |x;) |c/'w)

Qubit cost Gate/depth cost
- Input |x): 1 qubit (reused) - Cost of |fy(x)):
- Output |fy(x)): n qubits - 2n multiplications

- Workspace: mult. workspace

[Gidney + Ekera '19]: Factoring 2048-bit N = pg in 8 hours with 20 million physical qubits 8

Reducing output to 1 qubit: what if fy(x) : {0,1}* — {0,1}?

Find some £, (x) w/
period T, where
T can be used
to find factors

fN(X)........................
x=0 1 2

Reducing output to 1 qubit: what if fy(x) : {0,1}* — {0,1}?

Find some £, (x) w/ Generate
period T, where poly(T)

T can be used Z [x) | £y (x))

to find factors =5

fN(X)........................
x=0 1 2

Reducing output to 1 qubit: what if fy(x) : {0,1}* — {0,1}?

Find some £, (x) w/ Generate Measure f(x),
period T, where poly(T) yielding
T can be used Z | x) |fN(X)) superposition

to find factors over a coset

x=0

Reducing output to 1 qubit: what if fy(x) : {0,1}* — {0,1}?

Find some £, (x) w/ Generate Measure f(x),
period T, where poly(T) yielding
T can be used Z | x) lfN(X)) superposition

to find factors over a coset

x=0

QFT on x register,
measure,
postprocess
to find T

Reducing output to 1 qubit: what if fy(x) : {0,1}* — {0,1}?

Find some f,(x) w/ Generate Measure f (x),
period T, where poly(T) yielding
T can be used Z | x) |fN(X» superposition

to find factors over a coset

x=0

Is this going to actually help (or even work)?

QFT on x register,
measure,
postprocess
tofind T

Reducing output to 1 qubit: what if fy(x) : {0,1}* — {0,1}?

Find some f,(x) w/ Generate Measure f (x),
period T, where poly(T) yielding
T can be used Z | x) |fN(X» superposition

to find factors over a coset

x=0

Is this going to actually help (or even work)?

- There could be smaller periods than T [Hales + Hallgren '00]

QFT on x register,
measure,
postprocess
tofind T

Reducing output to 1 qubit: what if fy(x) : {0,1}* — {0,1}?

Find some f,(x) w/ Generate Measure f (x),
period T, where poly(T) yielding
T can be used Z | x) |fN(X» superposition

to find factors over a coset

x=0

Is this going to actually help (or even work)?

- There could be smaller periods than T [Hales + Hallgren '00]
- Need ~ log T qubits for input

QFT on x register,
measure,
postprocess
tofind T

Reducing output to 1 qubit: what if fy(x) : {0,1}* — {0,1}?

Find some f,(x) w/ Generate Measure f (x),
period T, where poly(T) yielding
T can be used Z | x) |fN(X» superposition

to find factors over a coset

x=0

Is this going to actually help (or even work)?

- There could be smaller periods than T [Hales + Hallgren '00]
- Need ~ log T qubits for input
- Need workspace to compute fy(x)

QFT on x register,
measure,
postprocess
tofind T

Avoid periods smaller than T

[May + Schlieper '22]: For some hash function h : {0,1}" — {0,1}, use
fu(x) = h(a* mod N)

Avoid periods smaller than T

[May + Schlieper '22]: For some hash function h : {0,1}" — {0,1}, use
fn(xX) = h(a* mod N)

Qubit cost Gate/depth cost
- Input |x): 2n qubits - Cost of |fu(X)):
- Output |fy(x)): 1 qubit - 2n multiplications

- Workspace: O(n) qubits

Reduce period, reduce qubits for input

[Ekera + Hastad "17]: Can factor N = pq via discrete log with period O(v/N)

Qubit cost Gate/depth cost
- Input |x): n/2 qubits - Cost of |fy(x)):
- Output [fy(x)): 1 qubit - n/2 multiplications

- Workspace: O(n) qubits

1

Reduce workspace

[Chevignard et al. '24]: Used residue number system to cut workspace to ~ O(log n) qubits

Qubit cost Gate/depth cost
- Input |x): n/2 qubits - Cost of |fy(x)):
- Output [fy(x)): 1 qubit - ~ 2 trillion Toffoli gates

- Workspace: O(log n) qubits

Putting it all together

[Gidney last week]: Arithmetic + fault tolerance optimizations

Factor 2048-bit N = pg using < 1 million physical qubits in ~ 1 week

Some things I've worked on

A sublinear space and depth
factoring algorithm

For integers N = P2Q:

Gate count O(n)
Qubits and depth 0(n?/3)

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

14

Some things I've worked on

A sublinear space and depth Log-depth "optimistic" QFT
factoring algorithm with no ancillas
For integers N = P2Q:
Gate count O(n) Error bounded by € on all but

Qubits and depth O(n?/3) O(e) - 2" basis states

GDKM, S. Ragavan, V. Vaikuntanathan, GDKM, J. Blue, T. Bergamaschi, C. Gidney,
K. Van Kirk. arXiv:2412.12558 1. Chuang. arXiv:2505.00701

14

Some things I've worked on

A sublinear space and depth Log-depth "optimistic" QFT
factoring algorithm with no ancillas
For integers N = P2Q:
Gate count O(n) Error bounded by € on all but
Qubits and depth 6(n?/*) O(€) - 2" basis states

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Fast quantum
integer multiplication

0(n"*¢) gates
No ancilla qubits

GDKM, J. Blue, T. Bergamaschi, C. Gidney, .
1. Chuang. arXiv:2505.00701 GDKM, N. Yao. arXiv:2403.18006

14

Some things I've worked on

A sublinear space and depth Log-depth "optimistic" QFT
factoring algorithm with no ancillas
For integers N = P2Q:
Gate count O(n) Error bounded by € on all but
Qubits and depth O(n?/*) O(€) - 2" basis states

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Fast quantum
integer multiplication

0(n"*¢) gates
No ancilla qubits

GDKM, J. Blue, T. Bergamaschi, C. Gidney, .
1. Chuang. arXiv:2505.00701 GDKM, N. Yao. arXiv:2403.18006

Shor's algorithm with:

0(n%*¢) gates
0(n"*¢) depth
2n + 0(n/ log n) total qubits

14

Factoring in sublinear space and depth

Greg Seyoon Vinod Katherine
Kahanamoku-Meyer Ragavan Vaikuntanathan Van Kirk

Asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?g, with m-bit g

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(nm) Gates: O(n)
Depth: O(n + m) Depth: O(n/m + m)

Space: O(m) Space: O(m)

Asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?g, with m-bit g

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(nm) Gates: O(n)
Depth: O(n + m) Depth: O(n/m + m)

Space: O(m) Space: O(m)

What should we set m to?

Classical factoring: for integers N = p?qg, with n = logN and m = logq

General Number Field Sieve: Lenstra ECM/Mulder:

Used for RSA integers Used for integers with small factors

Costs roughly exp (O(v/n)) Costs roughly exp (O(v/m))

What should we set m to?

Classical factoring: for integers N = p?qg, with n = logN and m = logq

General Number Field Sieve: Lenstra ECM/Mulder:
Used for RSA integers Used for integers with small factors
Costs roughly exp (O(v/n)) Costs roughly exp (O(v/m))

Set m = O(n??3) for the cheapest quantum circuit classically as hard as RSA

Asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with log g = m = 0(n?/?)

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(n%/3) Gates: O(n)
Depth: O(n) Depth: O(n?/?)

Space: O(n?/3) Space: O(n?/3)

Reducing output to 1 qubit: fy(x) : {0,1}* — {0,1}

Find some f,(x) w/ Generate Measure f(x),
period T, where poly(T) yielding
T can be used Z [x) |fN(X)) superposition

to find factors over a coset

x=0

Things we need for low qubit count:

- Small period T
- Avoid smaller periods than T
- Low workspace to compute fy(x)

QFT on x register,
measure,
postprocess
tofind T

19

Some number theory

Legendre symbol

20

Some number theory

Legendre symbol

For a prime p:

0 ifx=0 (modp)
(X> = {1 if3wst w>=x (mod p)
—1 otherwise

20

Some number theory

Legendre symbol

For a prime p:

0 ifx=0 (modp)
() = {1 if3wst w>=x (mod p)
—1 otherwise

Legendre symbol is 1) efficient to compute given x and p, 2) periodic with period p

20

Some number theory

Jacobi symbol

For a composite number N = [T, p;:
X X
®-1()

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?

21

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?

For N = pgq:

=))

22

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?

For N = pgq:

=))

Period is N—not helpful for factoring!

22

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?

For N = p%g:

23

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?

For N = p%g:

H-6)G)-¢)

23

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period..?

For N = p%g:

H-6)G)-¢)

Period is g—exactly what we need!!

23

Reducing output to 1 qubit: fy(x) : {0,1}* — {0,1}

Find some f,(x) w/ Generate Measure f(x),
period T, where poly(T) yielding
T can be used Z [x) |fN(X)) superposition

to find factors over a coset

x=0

Things we need for low qubit count:

v' Small period T
- Avoid smaller periods than T
- Low workspace to compute fy(x)

QFT on x register,
measure,
postprocess
tofind T

24

Avoiding smaller periods

Need to compute the Fourier transform of the Jacobi
symbol.

25

Avoiding smaller periods

Need to compute the Fourier transform of the Jacobi
symbol.

_
Carl Friedrich Gauss,
early 1800s: this function has
the ideal Fourier spectrum for
us!

25

Reducing output to 1 qubit: fy(x) : {0,1}* — {0,1}

Find some f,(x) w/ Generate Measure f(x),
period T, where poly(T) yielding
T can be used Z [x) |fN(X)) superposition

to find factors over a coset

x=0

Things we need for low qubit count:

v' Small period T
v Avoid smaller periods than T
- Low workspace to compute fy(x)

QFT on x register,
measure,
postprocess
tofind T

26

People knew this!

“An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Li, Peng, Du, Suter. Nature Scientific Reports, 2012.

Decomposing N — P?>Q via Jacobi symbol was known in the literature a decade ago!

27

People knew this!

“An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Li, Peng, Du, Suter. Nature Scientific Reports, 2012.

Decomposing N — P?>Q via Jacobi symbol was known in the literature a decade ago!

Their results:

- Jacobi symbol can be computed via standard circuits, using O(n) space

- Quantum period finding yields Q exactly if we take a superposition x € [0, N — 1]

27

People knew this!

“An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Li, Peng, Du, Suter. Nature Scientific Reports, 2012.

Decomposing N — P?>Q via Jacobi symbol was known in the literature a decade ago!

Our contributions:

- Jacobi symbol can be computed via standard circuits, using O(n) space
- When quantum input is small, extremely efficient quantum circuits exist!

- Quantum period finding yields Q exactly if we take a superposition x € [0, N — 1]

27

People knew this!

“An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Li, Peng, Du, Suter. Nature Scientific Reports, 2012.

Decomposing N — P?>Q via Jacobi symbol was known in the literature a decade ago!

Our contributions:

- Jacobi symbol can be computed via standard circuits, using O(n) space

- When quantum input is small, extremely efficient quantum circuits exist!

- Quantum period finding yields Q exactly if we take a superposition x € [0, N — 1]

- With superposition only to poly(Q), we still succeed — x needs only O(log Q) qubits

27

Computing the Jacobi symbol

Goal: Compute (%)

28

Computing the Jacobi symbol

Goal: Compute (%)

(g) € {-1,0,1} (1)

28

Computing the Jacobi symbol

Goal: Compute |x) — (%) [x)

(%) e{-1,1} (1)

28

Computing the Jacobi symbol

Goal: Compute |x) — (%) [x)

(%) e{-1,1} (1)

Recall: N is classical, n bits; |x) is quantum, m qubits—and potentially m < n.

28

Computing the Jacobi symbol

Goal: Compute |x) — (%) [x)

(%) e{-1,1} (1)

Recall: N is classical, n bits; |x) is quantum, m qubits—and potentially m < n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

28

Computing the Jacobi symbol

Goal: Compute |x) — (%) [x)

(%) e{-1,1} (1)

Recall: N is classical, n bits; |x) is quantum, m qubits—and potentially m < n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

28

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

classical B quantum

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

classical B quantum

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

s —)

classical B quantum m zeros

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

s | N')

classical B quantum m zeros

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

s —)

classical B quantum m zeros

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

e |N')

classical B quantum m zeros

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

e |N')

classical B quantum m zeros

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

e |N')

classical B quantum m zeros

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

e |N')

classical B quantum m zeros

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N
| X)

e |N')

classical B quantum m zeros

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

Now with two length-m inputs,
standard circuits for (37) have depth and qubits O(m)

29

Reducing output to 1 qubit: fy(x) : {0,1}* — {0,1}

Find some f,(x) w/ Generate Measure f(x),
period T, where poly(T) yielding
T can be used Z [x) |fN(X)) superposition

to find factors over a coset

x=0

Things we need for low qubit count:

v' Small period T
v Avoid smaller periods than T
v Low workspace to compute fy(x)

QFT on x register,
measure,
postprocess
tofind T

30

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with logg = m = 0(n*/?)

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(nm) Gates: O(n)
Depth: O(n + m) Depth: O(n/m + m)

Space: O(m) Space: O(m)

31

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p?q, with logg = m = 0(n*/?)

Schoolbook mult. + standard GCD: Fast mult. + fast GCD:
Gates: O(nm) Gates: O(n)

Depth: O(n + m) Depth: O(n/m + m)
Space: O(m) Space: O(m)

Space ~ 2m seems achievable, m ~ 300 seems classically hard.
Classically-hard factoring with a few hundred qubits?

31

Recent results

A sublinear space and depth Log-depth "optimistic" QFT
factoring algorithm with no ancillas
For integers N = P2Q:
Gate count O(n) Error bounded by € on all but
Qubits and depth O(n?/*) O(€) - 2" basis states

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Fast quantum
integer multiplication

0(n"*¢) gates
No ancilla qubits

GDKM, J. Blue, T. Bergamaschi, C. Gidney, .
1. Chuang. arXiv:2505.00701 GDKM, N. Yao. arXiv:2403.18006

Shor's algorithm with:

0(n%*¢) gates
0(n"*¢) depth
2n + 0(n/ log n) total qubits

32

Multiplication on quantum computers

Goal: Implement Uecxq(a) |X) |0) = |x) |ax), for n-bit a and x

33

Multiplication on quantum computers

Goal: Implement Uecxq(a) |X) |0) = |x) |ax), for n-bit a and x

[Draper '00]: Arithmetic in Fourier space

QFTfax) = 3 exp <2”2’ffxz) 12)

z

33

Multiplication on quantum computers

Goal: Implement Uecxq(a) |X) |0) = |x) |ax), for n-bit a and x

[Draper '00]: Arithmetic in Fourier space

QFT [ax) = 3 exp <2”2’ij2) 12)

z

Plan:

33

Multiplication on quantum computers

Goal: Implement Uecxq(a) |X) |0) = |x) |ax), for n-bit a and x

[Draper '00]: Arithmetic in Fourier space

QFT [ax) = 3 exp <2”2’ij2) 12)

z

Plan: 1) Generate |x) 3", |2)

33

Multiplication on quantum computers

Goal: Implement Uecxq(a) |X) |0) = |x) |ax), for n-bit a and x

[Draper '00]: Arithmetic in Fourier space

QFT |ax) = Ze <27HGXZ) 12)

Plan: 1) Generate |x) 3, |z), 2) apply a phase rotation of

33

Multiplication on quantum computers

Goal: Implement Uecxq(a) |X) |0) = |x) |ax), for n-bit a and x

[Draper '00]: Arithmetic in Fourier space

QFT |ax) = Ze <27HGXZ) 12)

Plan: 1) Generate |x) 3, |z), 2) apply a phase rotation of ,3) apply QFT ™"

33

Multiplication on quantum computers

Goal: Implement Uecxq(a) |X) |0) = |x) |ax), for n-bit a and x

[Draper '00]: Arithmetic in Fourier space

QFT |ax) = Ze <27HGXZ) 12)

Plan: 1) Generate |x) 3, |z), 2) apply a phase rotation of ,3) apply QFT ™"

[GDKM, Yao "24]: Can apply phase using:
O(n'*¢) gates O(n¢) depth O(n/log n) ancillas

33

A log-depth "optimistic" QFT with no ancillas

;i & £
, 4 Ve =

Greg John Thiago Craig Ike
Kahanamoku-Meyer Blue Bergamaschi Gidney Chuang

/ AW

Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):

2"—1
QFT |X) = |®x) = Z 2™/ |y

35

Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):

n—1

QFT |x) = |®x) = ® (O) | 20X |1>>

i=0

where 0.xXi41 - - = 2'x/2" mod 1

35

Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):
n—1

QFT) = |8, = Q) <o> JERTT. |1>>

i=0

where 0.xXi41 - - = 2'x/2" mod 1

e-approximate QFT: truncate 0.x;Xjyq - - - after m ~ O(log(n/e)) bits

35

Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):

n—1
QFT) =) ®< > |y>)

i=0 \y;€{0,1}

where 0.xXi41 - -- = 2'x/2" mod 1

e-approximate QFT: truncate 0.xiXjy; - - - after m ~ O(log(n/e)) bits

35

Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):

n—1
T =80 =@ 3 e y)
i=0 \y;€{0,1}

where 0.xXi41 - -- = 2'x/2" mod 1

e-approximate QFT: truncate 0.xiXjy; - - - after m ~ O(log(n/e)) bits

Let's do a similar trick, in base b = 2™

35

QFT, block version

In base b = 2" we have x = Y, 2™X;.

36

QFT, block version

In base b = 2" we have x = Y, 2™X;.
n/m-—1 n/m—=1 [2M—1

QFT ‘X> = ‘CI)X> = ® H(I)X>]j ~ ® Z e27riYJ-O.X,X,+1... |Yj>
Y/:O

36

QFT, block version

In base b = 2" we have x = Y, 2™X;.

n/m-—1 n/m—=1 [2M—1

QFT ‘X> = ‘CI)X> = ® H(I)X>]j ~ ® Z e27ri‘/J-O.X,X,+1.,. |Yj>
Y/:O

i=0 i=0

e-approximate QFT: since m ~ O(log(n/e)), truncate to 0.X;Xj 4

36

Approximate QFT, block version

In base b = 2™ we have x = 3, 2™X;.

37

Approximate QFT, block version

In base b = 2™ we have x = Y_;2™X;. With ¢ = 27r/2™:

n/m—1 [2Mm—1q

|®X> I~ ® Z e[(/)(XA'f'XHH/zm)YI ‘Y/>

i=0 \Y=0

QFT |x)

37

Approximate QFT, block version

Gate count: O(nlogn) Space-time product: O(n?)

38

Approximate QFT, block version

Gate count: O(nlogn) Space-time product: O(n?)
Why are we stuck with linear depth here?

38

How to do better than linear depth

What happens if you apply QFT' to the following (remember ¢ = 27 /2™)

QFTT) e |v;) =2

Yj

39

How to do better than linear depth

What happens if you apply QFT' to the following (remember ¢ = 27 /2™)

QFTT " e |v;) = |X;)

Yj

39

How to do better than linear depth

What happens if you apply QFT' to the following (remember ¢ = 27 /2™)

QFTT [|8,)]; = QFTT Y~ e/ #UirtXiaa/20Y |y =7
YI

39

How to do better than linear depth

What happens if you apply QFT' to the following (remember ¢ = 2m/2M)

QFT [j@,)]; = QFT' Y et /2% [y — I57)

39

A subtlety

40

A subtlety

What happens if X; is too close to 0 (mod 2™)?

40

A subtlety

What happens if X; is too close to 0 (mod 2™)?

Part of the phase rotation “controlled off” ‘)?,> will be off by 2™!

40

0
Q
s
©
on
on
c
o)
=
]
=
=
T
Q
(2’

Proposed replacement:

WS/ AX 1

41

n
Q
s}
©
on
on
c
o)
=
]
=
=
©
Q
(2’

Proposed replacement:

41

n
Q
s}
©
on
on
c
o)
=
]
=
=
©
Q
(2’

Proposed replacement:

“m G/ A2
ol

41

Looking a bit closer

42

P -
e
%]
=
o
=
a
©
on
=
=
o
o
-

Features:

log n)

(

each layer has depth O

layers,

+5

42

P -
e
%]
=
o
=
a
©
on
=
=
o
o
-

Features:

log n)

(

each layer has depth O

ayers,

L

- No ancilla qubits

+5

42

Looking a bit closer

Features:

- 5 layers, each layer has depth O(log n)
- No ancilla qubits

- All gates have range at most O(log n)

a
>
>
S
Ay

42

Looking a bit closer

Features:

- 5 layers, each layer has depth O(log n)

- No ancilla qubits

- All gates have range at most O(log n)

- Doesn’t give the right answer
(sometimes)

42

“Optimistic” QFT

We have a good approximation on basis states, with super nice properties!

Error of gate replacement; input states |x)

43

“Optimistic” QFT

We have a good approximation on the vast majority of basis states,
with super nice properties!

What should we do with it?

A

“Optimistic” QFT

We have a good approximation on the vast majority of basis states,
with super nice properties!

What should we do with it?

- Use it anyway (on “random” inputs)

A

“Optimistic” QFT

We have a good approximation on the vast majority of basis states,
with super nice properties!

What should we do with it?

- Use it anyway (on “random” inputs)

- Bootstrap it into a slightly more expensive circuit that
approximates QFT well on all basis states

A

Some things I've worked on

A sublinear space and depth Log-depth "optimistic" QFT
factoring algorithm with no ancillas
For integers N = P2Q:
Gate count O(n) Error bounded by € on all but
Qubits and depth O(n?/*) O(€) - 2" basis states

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Fast quantum
integer multiplication

0(n"*¢) gates
No ancilla qubits

GDKM, J. Blue, T. Bergamaschi, C. Gidney, .
1. Chuang. arXiv:2505.00701 GDKM, N. Yao. arXiv:2403.18006

Shor's algorithm with:

0(n%*¢) gates
0(n"*¢) depth
2n + 0(n/ log n) total qubits

45

Fast quantum multiplication without ancillas

Greg
Kahanamoku-Meyer

Background: fast multiplication

Given two n-bit numbers x and y, write them as "two digit’ numbers in base b = 2"/2.

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4

47

Background: fast multiplication

Given two n-bit numbers x and y, write them as "two digit’ numbers in base b = 2"/2.

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4

Xy = X1y1b? + Xoy1b + x1y0b + Xoyo

47

Background: fast multiplication

Given two n-bit numbers x and y, write them as "two digit’ numbers in base b = 2"/2.

X1 Xo
X Y Yo
XoYo

X1Yo

XoY

A4

Xy = X1y1b? + Xoy1b + x1y0b + Xoyo

Time remains O(n?), because 4(n/2)? = n?

47

Background: Karatsuba multiplication

Xy = x1y1b? + (Xoy1 + X1Yo)b + XoVo

48

Background: Karatsuba multiplication

Xy = x1y1b? + (Xoy1 + X1Yo)b + XoVo

Observation: Xoy1 + X1yo = (X1 + Xo) (V1 + Yo) — X1y1 — XoYo

48

Background: Karatsuba multiplication

Xy = x1y1b? + (Xoy1 + X1Yo)b + XoVo

Observation: Xoy1 + X1yo = (X1 + Xo) (V1 + Yo) — X1y1 — XoYo

Can compute xy with only multiplications of size logb = n/2:

1. X1y
2. XoYo
3. (X1 +Xo) (1 + Vo)

48

Background: Karatsuba multiplication

/
e

\

49

Background: Karatsuba multiplication

—
|
BT

x|

49

Background: Karatsuba multiplication

N\

1

/

49

Background: Karatsuba multiplication

N\

1

/

Depth: d = log, n

49

Background: Karatsuba multiplication

N\

1

/

Depth: d = log, n

Operations: 3¢

49

Background: Karatsuba multiplication

7N

ZINC /NG /INC /NG AN /N ZING AN /N

Depth: d = log, n

Operations: 3¢

H
= E9 o S

/1\

Cost: O(n'°&23) = O(n'8)
/

49

Fast classical-quantum multiplication

Goal: U(a) [x) |0) = |x) |ax)

50

Fast classical-quantum multiplication

Goal: Apply phase ¢xz; x and z are quantum

50

Fast classical-quantum multiplication

Goal: Apply phase ¢xz; x and z are quantum

Karatsuba:
Xz = 2"x121 4 2" ((Xo + X1) (20 + 21) — XoZo — X1Z1) + XoZo

50

Fast classical-quantum multiplication

Goal: Apply phase ¢xz; x and z are quantum

Plugging in Karatsuba:

exp (igpxz) = exp (Ip2"x121)
- exp (i¢XoZo)

- exp (i¢>2”/2((xo + x1)(2o + 21) — XoZo — qu1))

50

Fast classical-quantum multiplication

Goal: Apply phase ¢xz; x and z are quantum

Plugging in Karatsuba:

exp (igpxz) = exp (Ip2"x121)
- exp (i¢XoZo)

- exp (i¢>2”/2((xo + x1)(2o + 21) — XoZo — qu1))

How are we supposed to values in the phase?

50

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

Karatsuba:
Xz = 2"x121 + 2" ((Xo + X1) (20 + Z1) — XoZo — X121) + XoZo

51

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

Re-ordering Karatsuba:

XZ = (2” — 2n/2)X121 aF Zn/z(Xo aF X1)(Zo aF 21) aF (1 = 2n/2)X0Zo

51

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢xz) |X) |z)

Plugging in reordered Karatsuba:
exp (igxz) = exp (i</>(2” _ 2”/2)qu1)
- exp (i¢(1 — 2”/2)ono>

- exp <i¢2n/2(Xo + X1)(Z0 +Z1))

51

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

Plugging in reordered Karatsuba:

exp (igxz) =exp (igxaz7) ¢ = (2" —2"%)¢
- exp (ip2X0Zo) ¢ =(1-2"7)¢
-exp (Ig3(Xo + X1)(20 + 1)) ¢3 =2"%g

51

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

Plugging in reordered Karatsuba:

exp (igxz) =exp (igxaz7) ¢ = (2" —2"%)¢
- exp (ip2X0Zo) ¢ =(1-2"7)¢
-exp (Ig3(Xo + X1)(20 + 1)) ¢3 =2"%g

Each of these has the same structure, but on half as many qubits — do it recursively!

51

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

exp (igxz) =exp (igxaz7) P = (2" —2"%)¢
- exp (I¢2X0Zo) ¢ =(1-2"7)¢
- exp (i¢3(X0 +X1)(ZO +Z1)) 3 = 2”/2¢

Recursion relation: T(n) =3T(n/2)

52

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(¢) |x) |z) = exp (i¢px2) |x) |2)

exp (igxz) =exp (igxaz7) P = (2" —2"%)¢
- exp (I¢2X0Zo) ¢ =(1-2"7)¢
- exp (i¢3(X0 +X1)(ZO +Z1)) 3 = 2”/2¢

Recursion relation: T(n) = 3T(n/2) = O(n'°&:3) = O(n'*%) gates!

52

How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z1) |z0), can immediately do

* exp (ig1x1z1)

* exp (IXo2o)

53

How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z1) |z0), can immediately do
* exp (i¢51X1Z1)

* exp (IXo2o)

What about exp (I¢3(Xo + X1)(20 + 27))?

53

How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z1) |z0), can immediately do

- exp (ig1xi2)

* exp (IXo2o)

What about exp (I¢3(Xo + X1)(20 + 27))?

Use quantum addition circuits.

53

How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z1) |z0), can immediately do

- exp (ig1xi2)

* exp (IXo2o)

What about exp (I¢3(Xo + X1)(20 + 27))?

Use quantum addition circuits.

But, addition is reversible — do it in-place! E.g. |x1) [Xo) — |X1) |Xo + X1)

53

How many qubits do we need?

Splitting registers |x) — [x1) |Xo) and |z) — |z1) |z0), can immediately do

* exp (i¢51X1Z1)

* exp (IXo2o)

What about exp (I¢3(Xo + X1)(20 + 27))?

Use quantum addition circuits.

But, addition is reversible — do it in-place! E.g. |x1) [Xo) — |X1) |Xo + X1)

With a few tricks, can use ancillas.

53

Making it go faster

Karatsuba

Multiply n-bit numbers via
3 multiplications of size n/2

O(n'°e23) gates

54

Making it go faster

Karatsuba

Multiply n-bit numbers via
3 multiplications of size n/2

O(n'°e23) gates

Toom-Cook

Multiply n-bit numbers via
2R — 1 multiplications of size n/k

O(n's:(k=N) gates

54

Complexity vs. k

Toom-Cook has asymptotic complexity O(n'09x(2k=1))

55

Toom-Cook has asymptotic complexity O(n'09x(2k=1))

Algorithm | Gate count

Schoolbook O(n?)
k=2 O(n'8)
k=3 O(n'46)
k=4 O(rﬂ 40

Complexity vs. k

55

[x|
[x|
[]
Parallelization is natural.
[x|
[|
-_
_
_
-_

56

— =

\E

7=

N=

Parallelization is natural. =
_——

: [x| =

We have k sub-registers to work —_— /= (=
4 ;] =
with—can do k sub-products in ’ L) \— /=
[N

parallel. — =
Py

N =

e S

56

57

Depth is O(n€) where ¢ = logy, 2, using @(n/log n) ancillas.

57

Some things I've worked on

A sublinear space and depth Log-depth "optimistic" QFT
factoring algorithm with no ancillas
For integers N = P2Q:
Gate count O(n) Error bounded by € on all but
Qubits and depth O(n?/*) O(€) - 2" basis states

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Fast quantum
integer multiplication

0(n"*¢) gates
No ancilla qubits

GDKM, J. Blue, T. Bergamaschi, C. Gidney, .
1. Chuang. arXiv:2505.00701 GDKM, N. Yao. arXiv:2403.18006

Shor's algorithm with:

0(n%*¢) gates
0(n"*¢) depth
2n + 0(n/ log n) total qubits

58

