
Recent advances in quantum factoring

Greg Kahanamoku-Meyer

May 26, 2025
Can the reader say what two numbers 
multiplied together will produce the 
number 8,616,460,799? 

I think it unlikely that anyone but 
myself will ever know. 

-William Stanley Jevons, 1874



Why work on factoring?

Noisy qubits needed to factor 2048-bit RSA:

[Gidney + Ekera ’19] ∼ 20 million [Gidney last week] < 1 million

Two hypothetical futures:

Future A

2027: Circuit discovered needing
only 50,000 qubits

2032: Device with 50,000 qubits constructed

Future B

2032: Device with 50,000 qubits constructed

2033: Circuit discovered needing
only 50,000 qubits

I want to live in Future A!
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Why work on factoring?

Other less important reasons:

• Factoring makes a really straightforward efficiently-verifiable proof of quantumness
• The math is really fun
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What should we optimize for?

Fact: Logical error rate is exponential with 
code distance.

Imagine two algorithms, A and B.
B uses half as many qubits as A, but 10 
times as many gates.

Which will we be able to run first?

2019 Greg

"Let's make a proof of 
quantumness so efficient we 
can run it on physical 
qubits!"

2025 Greg

"We will need quantum 
error correction to do any 
nontrivial cryptography."

Hot take: Right now, we should only really care about logical qubit count.
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Should we ever care about gate count and depth?

We should optimize for depth if:

We have very good devices and we care
about wall time.

We should optimize for gate count if:

We have pretty good devices that are limited
by magic production.
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All (poly-time) quantum factoring algorithms: period finding

Qubit cost
• Input |x〉
• Output |fN(x)〉
• Workspace

Gate/depth cost
• Cost of |fN(x)〉
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Shor’s algorithm

Generate

Function: fN(x) = ax mod N Period: T = ordN(a) ∼ O(N)

Let n = dlogNe:

Qubit cost
• Input |x〉: 2n qubits
• Output |fN(x)〉: n qubits
• Workspace: ???

Gate/depth cost
• Cost of |fN(x)〉: ???
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Reducing input to 1 (reused) qubit

Key observation (Zalka ’98, and others):

ax mod N =
∏
i

cixi mod N

where ci = a2i mod N.

Reuse one qubit for all bits of x.

Key operation: |xi〉 |w〉 → |xi〉
∣∣cxii w〉

Qubit cost
• Input |x〉: 1 qubit (reused)
• Output |fN(x)〉: n qubits
• Workspace: mult. workspace

Gate/depth cost
• Cost of |fN(x)〉:

• 2n multiplications

[Gidney + Ekera ’19]: Factoring 2048-bit N = pq in 8 hours with 20 million physical qubits

8



Reducing input to 1 (reused) qubit

Key observation (Zalka ’98, and others):

ax mod N =
∏
i

cixi mod N

where ci = a2i mod N. Reuse one qubit for all bits of x.

Key operation: |xi〉 |w〉 → |xi〉
∣∣cxii w〉

Qubit cost
• Input |x〉: 1 qubit (reused)
• Output |fN(x)〉: n qubits
• Workspace: mult. workspace

Gate/depth cost
• Cost of |fN(x)〉:

• 2n multiplications

[Gidney + Ekera ’19]: Factoring 2048-bit N = pq in 8 hours with 20 million physical qubits

8



Reducing input to 1 (reused) qubit

Key observation (Zalka ’98, and others):

ax mod N =
∏
i

cixi mod N

where ci = a2i mod N. Reuse one qubit for all bits of x.

Key operation: |xi〉 |w〉 → |xi〉
∣∣cxii w〉

Qubit cost
• Input |x〉: 1 qubit (reused)
• Output |fN(x)〉: n qubits
• Workspace: mult. workspace

Gate/depth cost
• Cost of |fN(x)〉:

• 2n multiplications

[Gidney + Ekera ’19]: Factoring 2048-bit N = pq in 8 hours with 20 million physical qubits

8



Reducing input to 1 (reused) qubit

Key observation (Zalka ’98, and others):

ax mod N =
∏
i

cixi mod N

where ci = a2i mod N. Reuse one qubit for all bits of x.

Key operation: |xi〉 |w〉 → |xi〉
∣∣cxii w〉

Qubit cost
• Input |x〉: 1 qubit (reused)
• Output |fN(x)〉: n qubits
• Workspace: mult. workspace

Gate/depth cost
• Cost of |fN(x)〉:

• 2n multiplications

[Gidney + Ekera ’19]: Factoring 2048-bit N = pq in 8 hours with 20 million physical qubits

8



Reducing input to 1 (reused) qubit

Key observation (Zalka ’98, and others):

ax mod N =
∏
i

cixi mod N

where ci = a2i mod N. Reuse one qubit for all bits of x.

Key operation: |xi〉 |w〉 → |xi〉
∣∣cxii w〉

Qubit cost
• Input |x〉: 1 qubit (reused)
• Output |fN(x)〉: n qubits
• Workspace: mult. workspace

Gate/depth cost
• Cost of |fN(x)〉:

• 2n multiplications

[Gidney + Ekera ’19]: Factoring 2048-bit N = pq in 8 hours with 20 million physical qubits 8



Reducing output to 1 qubit: what if fN(x) : {0, 1}∗ → {0, 1}?

Is this going to actually help (or even work)?

• There could be smaller periods than T [Hales + Hallgren ’00]
• Need ∼ log T qubits for input
• Need workspace to compute fN(x)
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Avoid periods smaller than T

[May + Schlieper ’22]: For some hash function h : {0, 1}n → {0, 1}, use

fN(x) = h(ax mod N)

Qubit cost
• Input |x〉: 2n qubits
• Output |fN(x)〉: 1 qubit
• Workspace: O(n) qubits

Gate/depth cost
• Cost of |fN(x)〉:

• 2n multiplications
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Reduce period, reduce qubits for input

[Ekera + Hastad ’17]: Can factor N = pq via discrete log with period O(
√
N)

Qubit cost
• Input |x〉: n/2 qubits
• Output |fN(x)〉: 1 qubit
• Workspace: O(n) qubits

Gate/depth cost
• Cost of |fN(x)〉:

• n/2 multiplications
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Reduce workspace

[Chevignard et al. ’24]: Used residue number system to cut workspace to ∼ O(log n) qubits

Qubit cost
• Input |x〉: n/2 qubits
• Output |fN(x)〉: 1 qubit
• Workspace: O(log n) qubits

Gate/depth cost
• Cost of |fN(x)〉:

• ∼ 2 trillion Toffoli gates
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Putting it all together

[Gidney last week]: Arithmetic + fault tolerance optimizations

Factor 2048-bit N = pq using < 1 million physical qubits in ∼ 1 week
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Some things I’ve worked on

A sublinear space and depth
factoring algorithm

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558
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A sublinear space and depth
factoring algorithm

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Shor's algorithm with:
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Factoring in sublinear space and depth

Seyoon

Ragavan
Katherine

Van Kirk

Vinod

Vaikuntanathan

Greg

Kahanamoku-Meyer



Asymptotic costs

Main result: Circuit for factoring n-bit integers N = p2q, with m-bit q

Schoolbook mult. + standard GCD:

Gates: O(nm)

Depth: O(n+m)

Space: O(m)

Fast mult. + fast GCD:

Gates: Õ(n)
Depth: Õ(n/m+m)

Space: Õ(m)

What should we set m to?
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What should we set m to?

16



What should we set m to?

Classical factoring: for integers N = p2q, with n = logN and m = log q

General Number Field Sieve:
Used for RSA integers

Costs roughly exp (O( 3
√
n))

Lenstra ECM/Mulder:
Used for integers with small factors

Costs roughly exp (O(
√
m))

Set m = O(n2/3) for the cheapest quantum circuit classically as hard as RSA
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Asymptotic costs

Main result: Circuit for factoring n-bit integers N = p2q, with log q = m = O(n2/3)

Schoolbook mult. + standard GCD:

Gates: O(n5/3)
Depth: O(n)
Space: O(n2/3)

Fast mult. + fast GCD:

Gates: Õ(n)
Depth: Õ(n2/3)
Space: Õ(n2/3)
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Reducing output to 1 qubit: fN(x) : {0, 1}∗ → {0, 1}

Generate

Things we need for low qubit count:

• Small period T
• Avoid smaller periods than T
• Low workspace to compute fN(x)
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Some number theory

Legendre symbol

For a prime p:

(
x
p

)
=


0 if x ≡ 0 (mod p)
1 if ∃ w s.t. w2 ≡ x (mod p)
−1 otherwise

Legendre symbol is 1) efficient to compute given x and p, 2) periodic with period p

20
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Some number theory

Jacobi symbol

For a composite number N =
∏

i pi:

( x
N

)
=

∏
i

(
x
pi

)

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period...?
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Reducing output to 1 qubit: fN(x) : {0, 1}∗ → {0, 1}

Generate

Things we need for low qubit count:

X Small period T
• Avoid smaller periods than T
• Low workspace to compute fN(x)
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Avoiding smaller periods

Need to compute the Fourier transform of the Jacobi
symbol.

Carl Friedrich Gauss,
early 1800s: this function has
the ideal Fourier spectrum for
us!
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Reducing output to 1 qubit: fN(x) : {0, 1}∗ → {0, 1}

Generate
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X Small period T
X Avoid smaller periods than T
• Low workspace to compute fN(x)

26



People knew this!

“An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Li, Peng, Du, Suter. Nature Scientific Reports, 2012.

Decomposing N → P2Q via Jacobi symbol was known in the literature a decade ago!

Their results:

• Jacobi symbol can be computed via standard circuits, using O(n) space

• When quantum input is small, extremely efficient quantum circuits exist!

• Quantum period finding yields Q exactly if we take a superposition x ∈ [0,N− 1]

• With superposition only to poly(Q), we still succeed → x needs only O(logQ) qubits
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Computing the Jacobi symbol

Goal: Compute
( x
N

)

(a
b

)
∈ {−1, 0, 1} (1)

Recall: N is classical, n bits; |x〉 is quantum, m qubits—and potentially m � n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Yes!
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Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

N

classical quantum

Now with two length-m inputs,
standard circuits for

( x
N′

)
have depth and qubits Õ(m)
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29



Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

classical quantum zeros

Now with two length-m inputs,
standard circuits for

( x
N′

)
have depth and qubits Õ(m)
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Reducing output to 1 qubit: fN(x) : {0, 1}∗ → {0, 1}

Generate

Things we need for low qubit count:

X Small period T
X Avoid smaller periods than T
X Low workspace to compute fN(x)
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Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p2q, with log q = m = O(n2/3)

Schoolbook mult. + standard GCD:

Gates: O(nm)

Depth: O(n+m)

Space: O(m)

Fast mult. + fast GCD:

Gates: Õ(n)
Depth: Õ(n/m+m)

Space: Õ(m)

Space ∼ 2m seems achievable, m ∼ 300 seems classically hard.
Classically-hard factoring with a few hundred qubits?
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Recent results

Fast quantum 
integer multiplication

GDKM, N. Yao. arXiv:2403.18006

Log-depth "optimistic" QFT
with no ancillas

GDKM, J. Blue, T. Bergamaschi, C. Gidney, 
I. Chuang. arXiv:2505.00701

A sublinear space and depth
factoring algorithm

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Shor's algorithm with:
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Multiplication on quantum computers

Goal: Implement Uc×q(a) |x〉 |0〉 = |x〉 |ax〉, for n-bit a and x

[Draper ’00]: Arithmetic in Fourier space

QFT |ax〉 =
∑
z

exp

(
2πiaxz
2n

)
|z〉

Plan: 1) Generate |x〉
∑

z |z〉, 2) apply a phase rotation of exp
(
2πiaxz
2n

)
, 3) apply QFT−1

[GDKM, Yao ’24]: Can apply phase using:

O(n1+ε) gates O(nε) depth O(n/ log n) ancillas
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A log-depth "optimistic" QFT with no ancillas

John

Blue
Craig

Gidney

Thiago

Bergamaschi

Greg

Kahanamoku-Meyer
Ike

Chuang



Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):

QFT |x〉 ≡ |Φx〉 =
2n−1∑
y=0

e2πixy/2
n
|y〉

ε-approximate QFT: truncate 0.xixi+1 · · · after m ∼ O(log(n/ε)) bits

Let’s do a similar trick, in base b = 2m
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QFT, block version

In base b = 2m we have x =
∑

i 2miXi.

QFT |x〉 ≡ |Φx〉 =
n/m−1⊗
i=0

[|Φx〉]i ≈
n/m−1⊗
i=0

2m−1∑
Yj=0

e2πiYj·0.XiXi+1···
∣∣Yj〉



ε-approximate QFT: since m ∼ O(log(n/ε)), truncate to 0.XiXi+1
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Approximate QFT, block version

In base b = 2m we have x =
∑

i 2miXi.

With φ = 2π/2m:

QFT |x〉 ≡ |Φx〉 ≈
n/m−1⊗
i=0

2m−1∑
Yj=0

eiφ(Xi+Xi+1/2m)Yj
∣∣Yj〉


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Approximate QFT, block version

Gate count: O(n log n) Space-time product: O(n2)

Why are we stuck with linear depth here?
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How to do better than linear depth

What happens if you apply QFT† to the following (remember φ = 2π/2m)

QFT†
∑
Yj

eiφXiYj
∣∣Yj〉 =?
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What happens if you apply QFT† to the following (remember φ = 2π/2m)

QFT† [|Φx〉]i = QFT†
∑
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A subtlety

What happens if Xi is too close to 0 (mod 2m)?

Part of the phase rotation “controlled off”
∣∣∣X̃i〉 will be off by 2m!
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Rearranging gates

Proposed replacement:

†
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Looking a bit closer

Q
FT
†

Q
FT
†

Q
FT
†

Features:

• 5 layers, each layer has depth O(log n)
• No ancilla qubits
• All gates have range at most O(log n)
• Doesn’t give the right answer
(sometimes)
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“Optimistic” QFT

We have a good approximation on most basis states, with super nice properties!

0.0 0.2 0.4 0.6 0.8 1.0
x/2m

2 14

2 12

2 10

2 8

2 6

2 4

2 2

20

||W
′ |x

W
|x

||2

Error of gate replacement; input states |x
m=10
m=12
m=14
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“Optimistic” QFT

We have a good approximation on the vast majority of basis states,
with super nice properties!

What should we do with it?

• Use it anyway (on “random” inputs)
• Bootstrap it into a slightly more expensive circuit that
approximates QFT well on all basis states
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Some things I’ve worked on

Fast quantum 
integer multiplication

GDKM, N. Yao. arXiv:2403.18006

Log-depth "optimistic" QFT
with no ancillas

GDKM, J. Blue, T. Bergamaschi, C. Gidney, 
I. Chuang. arXiv:2505.00701

A sublinear space and depth
factoring algorithm

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Shor's algorithm with:
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Fast quantum multiplication without ancillas

Norm

Yao

Greg

Kahanamoku-Meyer



Background: fast multiplication

Given two n-bit numbers x and y, write them as ”two digit” numbers in base b = 2n/2.

x1 x0
× y1 y0

x0y0
x1y0
x0y1

+ x1y1

xy = x1y1b2 + x0y1b+ x1y0b+ x0y0

Time remains O(n2), because 4(n/2)2 = n2
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Background: Karatsuba multiplication

xy = x1y1b2 + (x0y1 + x1y0)b+ x0y0

Observation: x0y1 + x1y0 = (x1 + x0)(y1 + y0) − x1y1 − x0y0

Can compute xy with only three multiplications of size log b = n/2:

1. x1y1
2. x0y0
3. (x1 + x0)(y1 + y0)

48
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Background: Karatsuba multiplication

x

y

x0

y0

x1

y1

x0+x1

y0+y1

Depth: d = log2 n

Operations: 3d

Cost: O(nlog2 3) = O(n1.58···)
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Fast classical-quantum multiplication

Goal: U(a) |x〉 |0〉 = |x〉 |ax〉

How are we supposed to reuse values in the phase?
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Fast classical-quantum multiplication

Goal: Apply phase φxz; x and z are quantum
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Fast classical-quantum multiplication

Goal: Implement PhaseProduct(φ) |x〉 |z〉 = exp (iφxz) |x〉 |z〉

Karatsuba:
xz = 2nx1z1 + 2n/2((x0 + x1)(z0 + z1) − x0z0 − x1z1) + x0z0

Each of these has the same structure, but on half as many qubits → do it recursively!
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Fast classical-quantum multiplication

Goal: Implement PhaseProduct(φ) |x〉 |z〉 = exp (iφxz) |x〉 |z〉

Re-ordering Karatsuba:

xz = (2n − 2n/2)x1z1 + 2n/2(x0 + x1)(z0 + z1) + (1− 2n/2)x0z0

Each of these has the same structure, but on half as many qubits → do it recursively!
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Fast classical-quantum multiplication

Goal: Implement PhaseProduct(φ) |x〉 |z〉 = exp (iφxz) |x〉 |z〉
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· exp (iφ2x0z0)
· exp (iφ3(x0 + x1)(z0 + z1))

φ1 = (2n − 2n/2)φ

φ2 = (1− 2n/2)φ

φ3 = 2n/2φ

Recursion relation: T(n) = 3T(n/2)

⇒ O(nlog2 3) = O(n1.58···) gates!
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Fast classical-quantum multiplication

Goal: Implement PhaseProduct(φ) |x〉 |z〉 = exp (iφxz) |x〉 |z〉

exp (iφxz) = exp (iφ1x1z1)
· exp (iφ2x0z0)
· exp (iφ3(x0 + x1)(z0 + z1))

φ1 = (2n − 2n/2)φ

φ2 = (1− 2n/2)φ

φ3 = 2n/2φ

Recursion relation: T(n) = 3T(n/2) ⇒ O(nlog2 3) = O(n1.58···) gates!
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How many qubits do we need?

Splitting registers |x〉 → |x1〉 |x0〉 and |z〉 → |z1〉 |z0〉, can immediately do

• exp (iφ1x1z1)
• exp (iφ2x0z0)

What about exp (iφ3(x0 + x1)(z0 + z1))?

Use quantum addition circuits.

But, addition is reversible → do it in-place! E.g. |x1〉 |x0〉 → |x1〉 |x0 + x1〉

With a few tricks, can use zero ancillas.
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Making it go faster

Karatsuba

Multiply n-bit numbers via
3 multiplications of size n/2

O(nlog2 3) gates

Toom-Cook

Multiply n-bit numbers via
2k− 1 multiplications of size n/k

O(nlogk(2k−1)) gates
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Complexity vs. k

Toom-Cook has asymptotic complexity O(nlogk(2k−1))

Algorithm Gate count
Schoolbook O(n2)

k = 2 O(n1.58···)

k = 3 O(n1.46···)

k = 4 O(n1.40···)
...

...
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Depth

Parallelization is natural.

We have k sub-registers to work
with—can do k sub-products in
parallel.
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Depth

k = 3:

Q
FT

IQ
FT

Q
FT

IQ
FT

Q
FT

IQ
FT

Depth is O(nε) where ε = logk 2, using O(n/ log n) ancillas.
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Some things I’ve worked on

Fast quantum 
integer multiplication

GDKM, N. Yao. arXiv:2403.18006

Log-depth "optimistic" QFT
with no ancillas

GDKM, J. Blue, T. Bergamaschi, C. Gidney, 
I. Chuang. arXiv:2505.00701

A sublinear space and depth
factoring algorithm

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Shor's algorithm with:
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