
Recent advances in quantum factoring

Greg Kahanamoku-Meyer

May 26, 2025
Can the reader say what two numbers
multiplied together will produce the
number 8,616,460,799?

I think it unlikely that anyone but
myself will ever know.

-William Stanley Jevons, 1874

Why work on factoring?

Noisy qubits needed to factor 2048-bit RSA:

[Gidney + Ekera ’19] ∼ 20 million [Gidney last week] < 1 million

Two hypothetical futures:

Future A

2027: Circuit discovered needing
only 50,000 qubits

2032: Device with 50,000 qubits constructed

Future B

2032: Device with 50,000 qubits constructed

2033: Circuit discovered needing
only 50,000 qubits

I want to live in Future A!

2

Why work on factoring?

Noisy qubits needed to factor 2048-bit RSA:

[Gidney + Ekera ’19] ∼ 20 million

[Gidney last week] < 1 million

Two hypothetical futures:

Future A

2027: Circuit discovered needing
only 50,000 qubits

2032: Device with 50,000 qubits constructed

Future B

2032: Device with 50,000 qubits constructed

2033: Circuit discovered needing
only 50,000 qubits

I want to live in Future A!

2

Why work on factoring?

Noisy qubits needed to factor 2048-bit RSA:

[Gidney + Ekera ’19] ∼ 20 million [Gidney last week] < 1 million

Two hypothetical futures:

Future A

2027: Circuit discovered needing
only 50,000 qubits

2032: Device with 50,000 qubits constructed

Future B

2032: Device with 50,000 qubits constructed

2033: Circuit discovered needing
only 50,000 qubits

I want to live in Future A!

2

Why work on factoring?

Noisy qubits needed to factor 2048-bit RSA:

[Gidney + Ekera ’19] ∼ 20 million [Gidney last week] < 1 million

Two hypothetical futures:

Future A

2027: Circuit discovered needing
only 50,000 qubits

2032: Device with 50,000 qubits constructed

Future B

2032: Device with 50,000 qubits constructed

2033: Circuit discovered needing
only 50,000 qubits

I want to live in Future A!

2

Why work on factoring?

Noisy qubits needed to factor 2048-bit RSA:

[Gidney + Ekera ’19] ∼ 20 million [Gidney last week] < 1 million

Two hypothetical futures:

Future A

2027: Circuit discovered needing
only 50,000 qubits

2032: Device with 50,000 qubits constructed

Future B

2032: Device with 50,000 qubits constructed

2033: Circuit discovered needing
only 50,000 qubits

I want to live in Future A!

2

Why work on factoring?

Noisy qubits needed to factor 2048-bit RSA:

[Gidney + Ekera ’19] ∼ 20 million [Gidney last week] < 1 million

Two hypothetical futures:

Future A

2027: Circuit discovered needing
only 50,000 qubits

2032: Device with 50,000 qubits constructed

Future B

2032: Device with 50,000 qubits constructed

2033: Circuit discovered needing
only 50,000 qubits

I want to live in Future A!

2

Why work on factoring?

Noisy qubits needed to factor 2048-bit RSA:

[Gidney + Ekera ’19] ∼ 20 million [Gidney last week] < 1 million

Two hypothetical futures:

Future A

2027: Circuit discovered needing
only 50,000 qubits

2032: Device with 50,000 qubits constructed

Future B

2032: Device with 50,000 qubits constructed

2033: Circuit discovered needing
only 50,000 qubits

I want to live in Future A!
2

Why work on factoring?

Other less important reasons:

• Factoring makes a really straightforward efficiently-verifiable proof of quantumness
• The math is really fun

3

Why work on factoring?

Other less important reasons:

• Factoring makes a really straightforward efficiently-verifiable proof of quantumness

• The math is really fun

3

Why work on factoring?

Other less important reasons:

• Factoring makes a really straightforward efficiently-verifiable proof of quantumness
• The math is really fun

3

What should we optimize for?

Fact: Logical error rate is exponential with
code distance.

Imagine two algorithms, A and B.
B uses half as many qubits as A, but 10
times as many gates.

Which will we be able to run first?

2019 Greg

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

2025 Greg

"We will need quantum
error correction to do any
nontrivial cryptography."

Hot take: Right now, we should only really care about logical qubit count.

4

What should we optimize for?

2019 Greg

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

Fact: Logical error rate is exponential with
code distance.

Imagine two algorithms, A and B.
B uses half as many qubits as A, but 10
times as many gates.

Which will we be able to run first?

2019 Greg

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

2025 Greg

"We will need quantum
error correction to do any
nontrivial cryptography."

Hot take: Right now, we should only really care about logical qubit count.

4

What should we optimize for?

2019 Greg

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

2025 Greg

"We will need quantum
error correction to do any
nontrivial cryptography."

Fact: Logical error rate is exponential with
code distance.

Imagine two algorithms, A and B.
B uses half as many qubits as A, but 10
times as many gates.

Which will we be able to run first?

2019 Greg

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

2025 Greg

"We will need quantum
error correction to do any
nontrivial cryptography."

Hot take: Right now, we should only really care about logical qubit count.

4

What should we optimize for?

Fact: Logical error rate is exponential with
code distance.

2019 Greg

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

2025 Greg

"We will need quantum
error correction to do any
nontrivial cryptography."

Fact: Logical error rate is exponential with
code distance.

Imagine two algorithms, A and B.
B uses half as many qubits as A, but 10
times as many gates.

Which will we be able to run first?

2019 Greg

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

2025 Greg

"We will need quantum
error correction to do any
nontrivial cryptography."

Hot take: Right now, we should only really care about logical qubit count.

4

What should we optimize for?

Fact: Logical error rate is exponential with
code distance.

Imagine two algorithms, A and B.
B uses half as many qubits as A, but 10
times as many gates.

Which will we be able to run first?

2019 Greg

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

2025 Greg

"We will need quantum
error correction to do any
nontrivial cryptography."

Fact: Logical error rate is exponential with
code distance.

Imagine two algorithms, A and B.
B uses half as many qubits as A, but 10
times as many gates.

Which will we be able to run first?

2019 Greg

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

2025 Greg

"We will need quantum
error correction to do any
nontrivial cryptography."

Hot take: Right now, we should only really care about logical qubit count.

4

What should we optimize for?

Fact: Logical error rate is exponential with
code distance.

Imagine two algorithms, A and B.
B uses half as many qubits as A, but 10
times as many gates.

Which will we be able to run first?

With some set number of physical qubits
below EC threshold, can double code
distance if we use algorithm B---
exponential decrease in logical error rate!

2019 Greg

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

2025 Greg

"We will need quantum
error correction to do any
nontrivial cryptography."

Fact: Logical error rate is exponential with
code distance.

Imagine two algorithms, A and B.
B uses half as many qubits as A, but 10
times as many gates.

Which will we be able to run first?

2019 Greg

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

2025 Greg

"We will need quantum
error correction to do any
nontrivial cryptography."

Hot take: Right now, we should only really care about logical qubit count.

4

What should we optimize for?

Fact: Logical error rate is exponential with
code distance.

Imagine two algorithms, A and B.
B uses half as many qubits as A, but 10
times as many gates.

Which will we be able to run first?

2019 Greg

"Let's make a proof of
quantumness so efficient we
can run it on physical
qubits!"

2025 Greg

"We will need quantum
error correction to do any
nontrivial cryptography."

Hot take: Right now, we should only really care about logical qubit count. 4

Should we ever care about gate count and depth?

We should optimize for depth if:

We have very good devices and we care
about wall time.

We should optimize for gate count if:

We have pretty good devices that are limited
by magic production.

5

Should we ever care about gate count and depth?

We should optimize for depth if:

We have very good devices and we care
about wall time.

We should optimize for gate count if:

We have pretty good devices that are limited
by magic production.

5

Should we ever care about gate count and depth?

We should optimize for depth if:

We have very good devices and we care
about wall time.

We should optimize for gate count if:

We have pretty good devices that are limited
by magic production.

5

All (poly-time) quantum factoring algorithms: period finding

Qubit cost
• Input |x〉
• Output |fN(x)〉
• Workspace

Gate/depth cost
• Cost of |fN(x)〉

6

All (poly-time) quantum factoring algorithms: period finding

Generate

Qubit cost
• Input |x〉
• Output |fN(x)〉
• Workspace

Gate/depth cost
• Cost of |fN(x)〉

6

All (poly-time) quantum factoring algorithms: period finding

Generate

Qubit cost
• Input |x〉
• Output |fN(x)〉
• Workspace

Gate/depth cost
• Cost of |fN(x)〉

6

All (poly-time) quantum factoring algorithms: period finding

Generate

Qubit cost
• Input |x〉
• Output |fN(x)〉
• Workspace

Gate/depth cost
• Cost of |fN(x)〉

6

All (poly-time) quantum factoring algorithms: period finding

Generate

Qubit cost
• Input |x〉
• Output |fN(x)〉
• Workspace

Gate/depth cost
• Cost of |fN(x)〉

6

All (poly-time) quantum factoring algorithms: period finding

Generate

Qubit cost
• Input |x〉
• Output |fN(x)〉
• Workspace

Gate/depth cost
• Cost of |fN(x)〉

6

All (poly-time) quantum factoring algorithms: period finding

Generate

Qubit cost
• Input |x〉: O(log T) qubits
• Output |fN(x)〉
• Workspace

Gate/depth cost
• Cost of |fN(x)〉

6

All (poly-time) quantum factoring algorithms: period finding

Generate

Qubit cost
• Input |x〉: O(log T) qubits
• Output |fN(x)〉: O(log T) qubits
• Workspace

Gate/depth cost
• Cost of |fN(x)〉

6

All (poly-time) quantum factoring algorithms: period finding

Generate

Qubit cost
• Input |x〉: O(log T) qubits
• Output |fN(x)〉: O(log T) qubits
• Workspace: ???

Gate/depth cost
• Cost of |fN(x)〉: ???

6

Shor’s algorithm

Generate

Function: fN(x) = ax mod N Period: T = ordN(a) ∼ O(N)

Let n = dlogNe:

Qubit cost
• Input |x〉: 2n qubits
• Output |fN(x)〉: n qubits
• Workspace: ???

Gate/depth cost
• Cost of |fN(x)〉: ???

7

Shor’s algorithm

Generate

Function: fN(x) = ax mod N Period: T = ordN(a) ∼ O(N)

Let n = dlogNe:

Qubit cost
• Input |x〉: 2n qubits
• Output |fN(x)〉: n qubits
• Workspace: ???

Gate/depth cost
• Cost of |fN(x)〉: ???

7

Reducing input to 1 (reused) qubit

Key observation (Zalka ’98, and others):

ax mod N =
∏
i

cixi mod N

where ci = a2i mod N.

Reuse one qubit for all bits of x.

Key operation: |xi〉 |w〉 → |xi〉
∣∣cxii w〉

Qubit cost
• Input |x〉: 1 qubit (reused)
• Output |fN(x)〉: n qubits
• Workspace: mult. workspace

Gate/depth cost
• Cost of |fN(x)〉:

• 2n multiplications

[Gidney + Ekera ’19]: Factoring 2048-bit N = pq in 8 hours with 20 million physical qubits

8

Reducing input to 1 (reused) qubit

Key observation (Zalka ’98, and others):

ax mod N =
∏
i

cixi mod N

where ci = a2i mod N. Reuse one qubit for all bits of x.

Key operation: |xi〉 |w〉 → |xi〉
∣∣cxii w〉

Qubit cost
• Input |x〉: 1 qubit (reused)
• Output |fN(x)〉: n qubits
• Workspace: mult. workspace

Gate/depth cost
• Cost of |fN(x)〉:

• 2n multiplications

[Gidney + Ekera ’19]: Factoring 2048-bit N = pq in 8 hours with 20 million physical qubits

8

Reducing input to 1 (reused) qubit

Key observation (Zalka ’98, and others):

ax mod N =
∏
i

cixi mod N

where ci = a2i mod N. Reuse one qubit for all bits of x.

Key operation: |xi〉 |w〉 → |xi〉
∣∣cxii w〉

Qubit cost
• Input |x〉: 1 qubit (reused)
• Output |fN(x)〉: n qubits
• Workspace: mult. workspace

Gate/depth cost
• Cost of |fN(x)〉:

• 2n multiplications

[Gidney + Ekera ’19]: Factoring 2048-bit N = pq in 8 hours with 20 million physical qubits

8

Reducing input to 1 (reused) qubit

Key observation (Zalka ’98, and others):

ax mod N =
∏
i

cixi mod N

where ci = a2i mod N. Reuse one qubit for all bits of x.

Key operation: |xi〉 |w〉 → |xi〉
∣∣cxii w〉

Qubit cost
• Input |x〉: 1 qubit (reused)
• Output |fN(x)〉: n qubits
• Workspace: mult. workspace

Gate/depth cost
• Cost of |fN(x)〉:

• 2n multiplications

[Gidney + Ekera ’19]: Factoring 2048-bit N = pq in 8 hours with 20 million physical qubits

8

Reducing input to 1 (reused) qubit

Key observation (Zalka ’98, and others):

ax mod N =
∏
i

cixi mod N

where ci = a2i mod N. Reuse one qubit for all bits of x.

Key operation: |xi〉 |w〉 → |xi〉
∣∣cxii w〉

Qubit cost
• Input |x〉: 1 qubit (reused)
• Output |fN(x)〉: n qubits
• Workspace: mult. workspace

Gate/depth cost
• Cost of |fN(x)〉:

• 2n multiplications

[Gidney + Ekera ’19]: Factoring 2048-bit N = pq in 8 hours with 20 million physical qubits 8

Reducing output to 1 qubit: what if fN(x) : {0, 1}∗ → {0, 1}?

Is this going to actually help (or even work)?

• There could be smaller periods than T [Hales + Hallgren ’00]
• Need ∼ log T qubits for input
• Need workspace to compute fN(x)

9

Reducing output to 1 qubit: what if fN(x) : {0, 1}∗ → {0, 1}?

Generate

Is this going to actually help (or even work)?

• There could be smaller periods than T [Hales + Hallgren ’00]
• Need ∼ log T qubits for input
• Need workspace to compute fN(x)

9

Reducing output to 1 qubit: what if fN(x) : {0, 1}∗ → {0, 1}?

Generate

Is this going to actually help (or even work)?

• There could be smaller periods than T [Hales + Hallgren ’00]
• Need ∼ log T qubits for input
• Need workspace to compute fN(x)

9

Reducing output to 1 qubit: what if fN(x) : {0, 1}∗ → {0, 1}?

Generate

Is this going to actually help (or even work)?

• There could be smaller periods than T [Hales + Hallgren ’00]
• Need ∼ log T qubits for input
• Need workspace to compute fN(x)

9

Reducing output to 1 qubit: what if fN(x) : {0, 1}∗ → {0, 1}?

Generate

Is this going to actually help (or even work)?

• There could be smaller periods than T [Hales + Hallgren ’00]
• Need ∼ log T qubits for input
• Need workspace to compute fN(x)

9

Reducing output to 1 qubit: what if fN(x) : {0, 1}∗ → {0, 1}?

Generate

Is this going to actually help (or even work)?

• There could be smaller periods than T [Hales + Hallgren ’00]

• Need ∼ log T qubits for input
• Need workspace to compute fN(x)

9

Reducing output to 1 qubit: what if fN(x) : {0, 1}∗ → {0, 1}?

Generate

Is this going to actually help (or even work)?

• There could be smaller periods than T [Hales + Hallgren ’00]
• Need ∼ log T qubits for input

• Need workspace to compute fN(x)

9

Reducing output to 1 qubit: what if fN(x) : {0, 1}∗ → {0, 1}?

Generate

Is this going to actually help (or even work)?

• There could be smaller periods than T [Hales + Hallgren ’00]
• Need ∼ log T qubits for input
• Need workspace to compute fN(x)

9

Avoid periods smaller than T

[May + Schlieper ’22]: For some hash function h : {0, 1}n → {0, 1}, use

fN(x) = h(ax mod N)

Qubit cost
• Input |x〉: 2n qubits
• Output |fN(x)〉: 1 qubit
• Workspace: O(n) qubits

Gate/depth cost
• Cost of |fN(x)〉:

• 2n multiplications

10

Avoid periods smaller than T

[May + Schlieper ’22]: For some hash function h : {0, 1}n → {0, 1}, use

fN(x) = h(ax mod N)

Qubit cost
• Input |x〉: 2n qubits
• Output |fN(x)〉: 1 qubit
• Workspace: O(n) qubits

Gate/depth cost
• Cost of |fN(x)〉:

• 2n multiplications

10

Reduce period, reduce qubits for input

[Ekera + Hastad ’17]: Can factor N = pq via discrete log with period O(
√
N)

Qubit cost
• Input |x〉: n/2 qubits
• Output |fN(x)〉: 1 qubit
• Workspace: O(n) qubits

Gate/depth cost
• Cost of |fN(x)〉:

• n/2 multiplications

11

Reduce workspace

[Chevignard et al. ’24]: Used residue number system to cut workspace to ∼ O(log n) qubits

Qubit cost
• Input |x〉: n/2 qubits
• Output |fN(x)〉: 1 qubit
• Workspace: O(log n) qubits

Gate/depth cost
• Cost of |fN(x)〉:

• ∼ 2 trillion Toffoli gates

12

Putting it all together

[Gidney last week]: Arithmetic + fault tolerance optimizations

Factor 2048-bit N = pq using < 1 million physical qubits in ∼ 1 week

13

Some things I’ve worked on

A sublinear space and depth
factoring algorithm

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

14

Some things I’ve worked on

Log-depth "optimistic" QFT
with no ancillas

GDKM, J. Blue, T. Bergamaschi, C. Gidney,
I. Chuang. arXiv:2505.00701

A sublinear space and depth
factoring algorithm

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

14

Some things I’ve worked on

Fast quantum
integer multiplication

GDKM, N. Yao. arXiv:2403.18006

Log-depth "optimistic" QFT
with no ancillas

GDKM, J. Blue, T. Bergamaschi, C. Gidney,
I. Chuang. arXiv:2505.00701

A sublinear space and depth
factoring algorithm

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

14

Some things I’ve worked on

Fast quantum
integer multiplication

GDKM, N. Yao. arXiv:2403.18006

Log-depth "optimistic" QFT
with no ancillas

GDKM, J. Blue, T. Bergamaschi, C. Gidney,
I. Chuang. arXiv:2505.00701

A sublinear space and depth
factoring algorithm

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Shor's algorithm with:

14

Factoring in sublinear space and depth

Seyoon

Ragavan
Katherine

Van Kirk

Vinod

Vaikuntanathan

Greg

Kahanamoku-Meyer

Asymptotic costs

Main result: Circuit for factoring n-bit integers N = p2q, with m-bit q

Schoolbook mult. + standard GCD:

Gates: O(nm)

Depth: O(n+m)

Space: O(m)

Fast mult. + fast GCD:

Gates: Õ(n)
Depth: Õ(n/m+m)

Space: Õ(m)

What should we set m to?

16

Asymptotic costs

Main result: Circuit for factoring n-bit integers N = p2q, with m-bit q

Schoolbook mult. + standard GCD:

Gates: O(nm)

Depth: O(n+m)

Space: O(m)

Fast mult. + fast GCD:

Gates: Õ(n)
Depth: Õ(n/m+m)

Space: Õ(m)

What should we set m to?

16

What should we set m to?

Classical factoring: for integers N = p2q, with n = logN and m = log q

General Number Field Sieve:
Used for RSA integers

Costs roughly exp (O(3
√
n))

Lenstra ECM/Mulder:
Used for integers with small factors

Costs roughly exp (O(
√
m))

Set m = O(n2/3) for the cheapest quantum circuit classically as hard as RSA

17

What should we set m to?

Classical factoring: for integers N = p2q, with n = logN and m = log q

General Number Field Sieve:
Used for RSA integers

Costs roughly exp (O(3
√
n))

Lenstra ECM/Mulder:
Used for integers with small factors

Costs roughly exp (O(
√
m))

Set m = O(n2/3) for the cheapest quantum circuit classically as hard as RSA

17

Asymptotic costs

Main result: Circuit for factoring n-bit integers N = p2q, with log q = m = O(n2/3)

Schoolbook mult. + standard GCD:

Gates: O(n5/3)
Depth: O(n)
Space: O(n2/3)

Fast mult. + fast GCD:

Gates: Õ(n)
Depth: Õ(n2/3)
Space: Õ(n2/3)

18

Reducing output to 1 qubit: fN(x) : {0, 1}∗ → {0, 1}

Generate

Things we need for low qubit count:

• Small period T
• Avoid smaller periods than T
• Low workspace to compute fN(x)

19

Some number theory

Legendre symbol

For a prime p:

(
x
p

)
=


0 if x ≡ 0 (mod p)
1 if ∃ w s.t. w2 ≡ x (mod p)
−1 otherwise

Legendre symbol is 1) efficient to compute given x and p, 2) periodic with period p

20

Some number theory

Legendre symbol

For a prime p:

(
x
p

)
=


0 if x ≡ 0 (mod p)
1 if ∃ w s.t. w2 ≡ x (mod p)
−1 otherwise

Legendre symbol is 1) efficient to compute given x and p, 2) periodic with period p

20

Some number theory

Legendre symbol

For a prime p:

(
x
p

)
=


0 if x ≡ 0 (mod p)
1 if ∃ w s.t. w2 ≡ x (mod p)
−1 otherwise

Legendre symbol is 1) efficient to compute given x and p, 2) periodic with period p

20

Some number theory

Jacobi symbol

For a composite number N =
∏

i pi:

(x
N

)
=

∏
i

(
x
pi

)

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period...?

21

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period...?

For N = pq:

(x
N

)
=

(
x
p

) (
x
q

)

Period is N—not helpful for factoring!

22

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period...?

For N = pq:

(x
N

)
=

(
x
p

) (
x
q

)
Period is N—not helpful for factoring!

22

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period...?

For N = p2q:

(x
N

)
=

(
x
p

)2 (
x
q

)

=

(
x
q

)

Period is q—exactly what we need!!

23

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period...?

For N = p2q:

(x
N

)
=

(
x
p

)2 (
x
q

)
=

(
x
q

)

Period is q—exactly what we need!!

23

Some number theory

Jacobi symbol is 1) efficient to compute given x and N, 2) periodic with period...?

For N = p2q:

(x
N

)
=

(
x
p

)2 (
x
q

)
=

(
x
q

)

Period is q—exactly what we need!!

23

Reducing output to 1 qubit: fN(x) : {0, 1}∗ → {0, 1}

Generate

Things we need for low qubit count:

X Small period T
• Avoid smaller periods than T
• Low workspace to compute fN(x)

24

Avoiding smaller periods

Need to compute the Fourier transform of the Jacobi
symbol.

Carl Friedrich Gauss,
early 1800s: this function has
the ideal Fourier spectrum for
us!

25

Avoiding smaller periods

Need to compute the Fourier transform of the Jacobi
symbol. Carl Friedrich Gauss,

early 1800s: this function has
the ideal Fourier spectrum for
us!

25

Reducing output to 1 qubit: fN(x) : {0, 1}∗ → {0, 1}

Generate

Things we need for low qubit count:

X Small period T
X Avoid smaller periods than T
• Low workspace to compute fN(x)

26

People knew this!

“An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Li, Peng, Du, Suter. Nature Scientific Reports, 2012.

Decomposing N → P2Q via Jacobi symbol was known in the literature a decade ago!

Their results:

• Jacobi symbol can be computed via standard circuits, using O(n) space

• When quantum input is small, extremely efficient quantum circuits exist!

• Quantum period finding yields Q exactly if we take a superposition x ∈ [0,N− 1]

• With superposition only to poly(Q), we still succeed → x needs only O(logQ) qubits

27

People knew this!

“An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Li, Peng, Du, Suter. Nature Scientific Reports, 2012.

Decomposing N → P2Q via Jacobi symbol was known in the literature a decade ago!

Their results:

• Jacobi symbol can be computed via standard circuits, using O(n) space

• When quantum input is small, extremely efficient quantum circuits exist!

• Quantum period finding yields Q exactly if we take a superposition x ∈ [0,N− 1]

• With superposition only to poly(Q), we still succeed → x needs only O(logQ) qubits

27

People knew this!

“An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Li, Peng, Du, Suter. Nature Scientific Reports, 2012.

Decomposing N → P2Q via Jacobi symbol was known in the literature a decade ago!

Our contributions:

• Jacobi symbol can be computed via standard circuits, using O(n) space
• When quantum input is small, extremely efficient quantum circuits exist!

• Quantum period finding yields Q exactly if we take a superposition x ∈ [0,N− 1]

• With superposition only to poly(Q), we still succeed → x needs only O(logQ) qubits

27

People knew this!

“An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition
Problem.” Li, Peng, Du, Suter. Nature Scientific Reports, 2012.

Decomposing N → P2Q via Jacobi symbol was known in the literature a decade ago!

Our contributions:

• Jacobi symbol can be computed via standard circuits, using O(n) space
• When quantum input is small, extremely efficient quantum circuits exist!

• Quantum period finding yields Q exactly if we take a superposition x ∈ [0,N− 1]
• With superposition only to poly(Q), we still succeed → x needs only O(logQ) qubits

27

Computing the Jacobi symbol

Goal: Compute
(x
N

)

(a
b

)
∈ {−1, 0, 1} (1)

Recall: N is classical, n bits; |x〉 is quantum, m qubits—and potentially m � n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Yes!

28

Computing the Jacobi symbol

Goal: Compute
(x
N

)
(a
b

)
∈ {−1, 0, 1} (1)

Recall: N is classical, n bits; |x〉 is quantum, m qubits—and potentially m � n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Yes!

28

Computing the Jacobi symbol

Goal: Compute |x〉 →
(x
N

)
|x〉

(a
b

)
∈̃{−1, 1} (1)

Recall: N is classical, n bits; |x〉 is quantum, m qubits—and potentially m � n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Yes!

28

Computing the Jacobi symbol

Goal: Compute |x〉 →
(x
N

)
|x〉

(a
b

)
∈̃{−1, 1} (1)

Recall: N is classical, n bits; |x〉 is quantum, m qubits—and potentially m � n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Yes!

28

Computing the Jacobi symbol

Goal: Compute |x〉 →
(x
N

)
|x〉

(a
b

)
∈̃{−1, 1} (1)

Recall: N is classical, n bits; |x〉 is quantum, m qubits—and potentially m � n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Yes!

28

Computing the Jacobi symbol

Goal: Compute |x〉 →
(x
N

)
|x〉

(a
b

)
∈̃{−1, 1} (1)

Recall: N is classical, n bits; |x〉 is quantum, m qubits—and potentially m � n.

The “big” input is entirely classical.
Can we implement this circuit using only O(m) qubits?

Yes!
28

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

N

classical quantum

Now with two length-m inputs,
standard circuits for

(x
N′

)
have depth and qubits Õ(m)

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

N

classical quantum

Now with two length-m inputs,
standard circuits for

(x
N′

)
have depth and qubits Õ(m)

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

classical quantum zeros

Now with two length-m inputs,
standard circuits for

(x
N′

)
have depth and qubits Õ(m)

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

classical quantum zeros

Now with two length-m inputs,
standard circuits for

(x
N′

)
have depth and qubits Õ(m)

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

classical quantum zeros

Now with two length-m inputs,
standard circuits for

(x
N′

)
have depth and qubits Õ(m)

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

classical quantum zeros

Now with two length-m inputs,
standard circuits for

(x
N′

)
have depth and qubits Õ(m)

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

classical quantum zeros

Now with two length-m inputs,
standard circuits for

(x
N′

)
have depth and qubits Õ(m)

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

classical quantum zeros

Now with two length-m inputs,
standard circuits for

(x
N′

)
have depth and qubits Õ(m)

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

classical quantum zeros

Now with two length-m inputs,
standard circuits for

(x
N′

)
have depth and qubits Õ(m)

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

classical quantum zeros

Now with two length-m inputs,
standard circuits for

(x
N′

)
have depth and qubits Õ(m)

29

Streaming classical bits to a quantum circuit

Key idea: can stream through the classical bits of N

Now with two length-m inputs,
standard circuits for

(x
N′

)
have depth and qubits Õ(m)

29

Reducing output to 1 qubit: fN(x) : {0, 1}∗ → {0, 1}

Generate

Things we need for low qubit count:

X Small period T
X Avoid smaller periods than T
X Low workspace to compute fN(x)

30

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p2q, with log q = m = O(n2/3)

Schoolbook mult. + standard GCD:

Gates: O(nm)

Depth: O(n+m)

Space: O(m)

Fast mult. + fast GCD:

Gates: Õ(n)
Depth: Õ(n/m+m)

Space: Õ(m)

Space ∼ 2m seems achievable, m ∼ 300 seems classically hard.
Classically-hard factoring with a few hundred qubits?

31

Putting it all together: asymptotic costs

Main result: Circuit for factoring n-bit integers N = p2q, with log q = m = O(n2/3)

Schoolbook mult. + standard GCD:

Gates: O(nm)

Depth: O(n+m)

Space: O(m)

Fast mult. + fast GCD:

Gates: Õ(n)
Depth: Õ(n/m+m)

Space: Õ(m)

Space ∼ 2m seems achievable, m ∼ 300 seems classically hard.
Classically-hard factoring with a few hundred qubits?

31

Recent results

Fast quantum
integer multiplication

GDKM, N. Yao. arXiv:2403.18006

Log-depth "optimistic" QFT
with no ancillas

GDKM, J. Blue, T. Bergamaschi, C. Gidney,
I. Chuang. arXiv:2505.00701

A sublinear space and depth
factoring algorithm

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Shor's algorithm with:

32

Multiplication on quantum computers

Goal: Implement Uc×q(a) |x〉 |0〉 = |x〉 |ax〉, for n-bit a and x

[Draper ’00]: Arithmetic in Fourier space

QFT |ax〉 =
∑
z

exp

(
2πiaxz
2n

)
|z〉

Plan: 1) Generate |x〉
∑

z |z〉, 2) apply a phase rotation of exp
(
2πiaxz
2n

)
, 3) apply QFT−1

[GDKM, Yao ’24]: Can apply phase using:

O(n1+ε) gates O(nε) depth O(n/ log n) ancillas

33

Multiplication on quantum computers

Goal: Implement Uc×q(a) |x〉 |0〉 = |x〉 |ax〉, for n-bit a and x

[Draper ’00]: Arithmetic in Fourier space

QFT |ax〉 =
∑
z

exp

(
2πiaxz
2n

)
|z〉

Plan: 1) Generate |x〉
∑

z |z〉, 2) apply a phase rotation of exp
(
2πiaxz
2n

)
, 3) apply QFT−1

[GDKM, Yao ’24]: Can apply phase using:

O(n1+ε) gates O(nε) depth O(n/ log n) ancillas

33

Multiplication on quantum computers

Goal: Implement Uc×q(a) |x〉 |0〉 = |x〉 |ax〉, for n-bit a and x

[Draper ’00]: Arithmetic in Fourier space

QFT |ax〉 =
∑
z

exp

(
2πiaxz
2n

)
|z〉

Plan:

1) Generate |x〉
∑

z |z〉, 2) apply a phase rotation of exp
(
2πiaxz
2n

)
, 3) apply QFT−1

[GDKM, Yao ’24]: Can apply phase using:

O(n1+ε) gates O(nε) depth O(n/ log n) ancillas

33

Multiplication on quantum computers

Goal: Implement Uc×q(a) |x〉 |0〉 = |x〉 |ax〉, for n-bit a and x

[Draper ’00]: Arithmetic in Fourier space

QFT |ax〉 =
∑
z

exp

(
2πiaxz
2n

)
|z〉

Plan: 1) Generate |x〉
∑

z |z〉

, 2) apply a phase rotation of exp
(
2πiaxz
2n

)
, 3) apply QFT−1

[GDKM, Yao ’24]: Can apply phase using:

O(n1+ε) gates O(nε) depth O(n/ log n) ancillas

33

Multiplication on quantum computers

Goal: Implement Uc×q(a) |x〉 |0〉 = |x〉 |ax〉, for n-bit a and x

[Draper ’00]: Arithmetic in Fourier space

QFT |ax〉 =
∑
z

exp

(
2πiaxz
2n

)
|z〉

Plan: 1) Generate |x〉
∑

z |z〉, 2) apply a phase rotation of exp
(
2πiaxz
2n

)

, 3) apply QFT−1

[GDKM, Yao ’24]: Can apply phase using:

O(n1+ε) gates O(nε) depth O(n/ log n) ancillas

33

Multiplication on quantum computers

Goal: Implement Uc×q(a) |x〉 |0〉 = |x〉 |ax〉, for n-bit a and x

[Draper ’00]: Arithmetic in Fourier space

QFT |ax〉 =
∑
z

exp

(
2πiaxz
2n

)
|z〉

Plan: 1) Generate |x〉
∑

z |z〉, 2) apply a phase rotation of exp
(
2πiaxz
2n

)
, 3) apply QFT−1

[GDKM, Yao ’24]: Can apply phase using:

O(n1+ε) gates O(nε) depth O(n/ log n) ancillas

33

Multiplication on quantum computers

Goal: Implement Uc×q(a) |x〉 |0〉 = |x〉 |ax〉, for n-bit a and x

[Draper ’00]: Arithmetic in Fourier space

QFT |ax〉 =
∑
z

exp

(
2πiaxz
2n

)
|z〉

Plan: 1) Generate |x〉
∑

z |z〉, 2) apply a phase rotation of exp
(
2πiaxz
2n

)
, 3) apply QFT−1

[GDKM, Yao ’24]: Can apply phase using:

O(n1+ε) gates O(nε) depth O(n/ log n) ancillas

33

A log-depth "optimistic" QFT with no ancillas

John

Blue
Craig

Gidney

Thiago

Bergamaschi

Greg

Kahanamoku-Meyer
Ike

Chuang

Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):

QFT |x〉 ≡ |Φx〉 =
2n−1∑
y=0

e2πixy/2
n
|y〉

ε-approximate QFT: truncate 0.xixi+1 · · · after m ∼ O(log(n/ε)) bits

Let’s do a similar trick, in base b = 2m

35

Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):

QFT |x〉 ≡ |Φx〉 =
n−1⊗
i=0

(
|0〉 + e2πi 0.xixi+1··· |1〉

)
where 0.xixi+1 · · · = 2ix/2n mod 1

ε-approximate QFT: truncate 0.xixi+1 · · · after m ∼ O(log(n/ε)) bits

Let’s do a similar trick, in base b = 2m

35

Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):

QFT |x〉 ≡ |Φx〉 =
n−1⊗
i=0

(
|0〉 + e2πi 0.xixi+1··· |1〉

)
where 0.xixi+1 · · · = 2ix/2n mod 1

ε-approximate QFT: truncate 0.xixi+1 · · · after m ∼ O(log(n/ε)) bits

Let’s do a similar trick, in base b = 2m

35

Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):

QFT |x〉 ≡ |Φx〉 =
n−1⊗
i=0

 ∑
yj∈{0,1}

e2πiyj·0.xixi+1···
∣∣yj〉


where 0.xixi+1 · · · = 2ix/2n mod 1

ε-approximate QFT: truncate 0.xixi+1 · · · after m ∼ O(log(n/ε)) bits

Let’s do a similar trick, in base b = 2m

35

Structure of the QFT

The quantum Fourier transform on n qubits (dropping normalization):

QFT |x〉 ≡ |Φx〉 =
n−1⊗
i=0

 ∑
yj∈{0,1}

e2πiyj·0.xixi+1···
∣∣yj〉


where 0.xixi+1 · · · = 2ix/2n mod 1

ε-approximate QFT: truncate 0.xixi+1 · · · after m ∼ O(log(n/ε)) bits

Let’s do a similar trick, in base b = 2m

35

QFT, block version

In base b = 2m we have x =
∑

i 2miXi.

QFT |x〉 ≡ |Φx〉 =
n/m−1⊗
i=0

[|Φx〉]i ≈
n/m−1⊗
i=0

2m−1∑
Yj=0

e2πiYj·0.XiXi+1···
∣∣Yj〉



ε-approximate QFT: since m ∼ O(log(n/ε)), truncate to 0.XiXi+1

36

QFT, block version

In base b = 2m we have x =
∑

i 2miXi.

QFT |x〉 ≡ |Φx〉 =
n/m−1⊗
i=0

[|Φx〉]i ≈
n/m−1⊗
i=0

2m−1∑
Yj=0

e2πiYj·0.XiXi+1···
∣∣Yj〉



ε-approximate QFT: since m ∼ O(log(n/ε)), truncate to 0.XiXi+1

36

QFT, block version

In base b = 2m we have x =
∑

i 2miXi.

QFT |x〉 ≡ |Φx〉 =
n/m−1⊗
i=0

[|Φx〉]i ≈
n/m−1⊗
i=0

2m−1∑
Yj=0

e2πiYj·0.XiXi+1···
∣∣Yj〉



ε-approximate QFT: since m ∼ O(log(n/ε)), truncate to 0.XiXi+1

36

Approximate QFT, block version

In base b = 2m we have x =
∑

i 2miXi.

With φ = 2π/2m:

QFT |x〉 ≡ |Φx〉 ≈
n/m−1⊗
i=0

2m−1∑
Yj=0

eiφ(Xi+Xi+1/2m)Yj
∣∣Yj〉



37

Approximate QFT, block version

In base b = 2m we have x =
∑

i 2miXi. With φ = 2π/2m:

QFT |x〉 ≡ |Φx〉 ≈
n/m−1⊗
i=0

2m−1∑
Yj=0

eiφ(Xi+Xi+1/2m)Yj
∣∣Yj〉



37

Approximate QFT, block version

Gate count: O(n log n) Space-time product: O(n2)

Why are we stuck with linear depth here?

38

Approximate QFT, block version

Gate count: O(n log n) Space-time product: O(n2)

Why are we stuck with linear depth here?

38

How to do better than linear depth

What happens if you apply QFT† to the following (remember φ = 2π/2m)

QFT†
∑
Yj

eiφXiYj
∣∣Yj〉 =?

39

How to do better than linear depth

What happens if you apply QFT† to the following (remember φ = 2π/2m)

QFT†
∑
Yj

eiφXiYj
∣∣Yj〉 = |Xi〉

39

How to do better than linear depth

What happens if you apply QFT† to the following (remember φ = 2π/2m)

QFT† [|Φx〉]i = QFT†
∑
Yj

eiφ(Xi+Xi+1/2m)Yj
∣∣Yj〉 =?

39

How to do better than linear depth

What happens if you apply QFT† to the following (remember φ = 2π/2m)

QFT† [|Φx〉]i = QFT†
∑
Yj

eiφ(Xi+Xi+1/2m)Yj
∣∣Yj〉 =

∣∣∣X̃i〉

39

A subtlety

What happens if Xi is too close to 0 (mod 2m)?

Part of the phase rotation “controlled off”
∣∣∣X̃i〉 will be off by 2m!

40

A subtlety

What happens if Xi is too close to 0 (mod 2m)?

Part of the phase rotation “controlled off”
∣∣∣X̃i〉 will be off by 2m!

40

A subtlety

What happens if Xi is too close to 0 (mod 2m)?

Part of the phase rotation “controlled off”
∣∣∣X̃i〉 will be off by 2m!

40

Rearranging gates

Proposed replacement:

†

41

Rearranging gates

Proposed replacement:

41

Rearranging gates

Proposed replacement:

†

41

Looking a bit closer

Q
FT
†

Q
FT
†

Q
FT
†

Features:

• 5 layers, each layer has depth O(log n)
• No ancilla qubits
• All gates have range at most O(log n)
• Doesn’t give the right answer
(sometimes)

42

Looking a bit closer

Q
FT
†

Q
FT
†

Q
FT
†

Features:
• 5 layers, each layer has depth O(log n)

• No ancilla qubits
• All gates have range at most O(log n)
• Doesn’t give the right answer
(sometimes)

42

Looking a bit closer

Q
FT
†

Q
FT
†

Q
FT
†

Features:
• 5 layers, each layer has depth O(log n)
• No ancilla qubits

• All gates have range at most O(log n)
• Doesn’t give the right answer
(sometimes)

42

Looking a bit closer

Q
FT
†

Q
FT
†

Q
FT
†

Features:
• 5 layers, each layer has depth O(log n)
• No ancilla qubits
• All gates have range at most O(log n)

• Doesn’t give the right answer
(sometimes)

42

Looking a bit closer

Q
FT
†

Q
FT
†

Q
FT
†

Features:
• 5 layers, each layer has depth O(log n)
• No ancilla qubits
• All gates have range at most O(log n)
• Doesn’t give the right answer
(sometimes)

42

“Optimistic” QFT

We have a good approximation on most basis states, with super nice properties!

0.0 0.2 0.4 0.6 0.8 1.0
x/2m

2 14

2 12

2 10

2 8

2 6

2 4

2 2

20

||W
′ |x

W
|x

||2

Error of gate replacement; input states |x
m=10
m=12
m=14

43

“Optimistic” QFT

We have a good approximation on the vast majority of basis states,
with super nice properties!

What should we do with it?

• Use it anyway (on “random” inputs)
• Bootstrap it into a slightly more expensive circuit that
approximates QFT well on all basis states

44

“Optimistic” QFT

We have a good approximation on the vast majority of basis states,
with super nice properties!

What should we do with it?

• Use it anyway (on “random” inputs)

• Bootstrap it into a slightly more expensive circuit that
approximates QFT well on all basis states

44

“Optimistic” QFT

We have a good approximation on the vast majority of basis states,
with super nice properties!

What should we do with it?

• Use it anyway (on “random” inputs)
• Bootstrap it into a slightly more expensive circuit that
approximates QFT well on all basis states

44

Some things I’ve worked on

Fast quantum
integer multiplication

GDKM, N. Yao. arXiv:2403.18006

Log-depth "optimistic" QFT
with no ancillas

GDKM, J. Blue, T. Bergamaschi, C. Gidney,
I. Chuang. arXiv:2505.00701

A sublinear space and depth
factoring algorithm

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Shor's algorithm with:

45

Fast quantum multiplication without ancillas

Norm

Yao

Greg

Kahanamoku-Meyer

Background: fast multiplication

Given two n-bit numbers x and y, write them as ”two digit” numbers in base b = 2n/2.

x1 x0
× y1 y0

x0y0
x1y0
x0y1

+ x1y1

xy = x1y1b2 + x0y1b+ x1y0b+ x0y0

Time remains O(n2), because 4(n/2)2 = n2

47

Background: fast multiplication

Given two n-bit numbers x and y, write them as ”two digit” numbers in base b = 2n/2.

x1 x0
× y1 y0

x0y0
x1y0
x0y1

+ x1y1

xy = x1y1b2 + x0y1b+ x1y0b+ x0y0

Time remains O(n2), because 4(n/2)2 = n2

47

Background: fast multiplication

Given two n-bit numbers x and y, write them as ”two digit” numbers in base b = 2n/2.

x1 x0
× y1 y0

x0y0
x1y0
x0y1

+ x1y1

xy = x1y1b2 + x0y1b+ x1y0b+ x0y0

Time remains O(n2), because 4(n/2)2 = n2

47

Background: Karatsuba multiplication

xy = x1y1b2 + (x0y1 + x1y0)b+ x0y0

Observation: x0y1 + x1y0 = (x1 + x0)(y1 + y0) − x1y1 − x0y0

Can compute xy with only three multiplications of size log b = n/2:

1. x1y1
2. x0y0
3. (x1 + x0)(y1 + y0)

48

Background: Karatsuba multiplication

xy = x1y1b2 + (x0y1 + x1y0)b+ x0y0

Observation: x0y1 + x1y0 = (x1 + x0)(y1 + y0) − x1y1 − x0y0

Can compute xy with only three multiplications of size log b = n/2:

1. x1y1
2. x0y0
3. (x1 + x0)(y1 + y0)

48

Background: Karatsuba multiplication

xy = x1y1b2 + (x0y1 + x1y0)b+ x0y0

Observation: x0y1 + x1y0 = (x1 + x0)(y1 + y0) − x1y1 − x0y0

Can compute xy with only three multiplications of size log b = n/2:

1. x1y1
2. x0y0
3. (x1 + x0)(y1 + y0)

48

Background: Karatsuba multiplication

x

y

x0

y0

x1

y1

x0+x1

y0+y1

Depth: d = log2 n

Operations: 3d

Cost: O(nlog2 3) = O(n1.58···)

49

Background: Karatsuba multiplication

x

y

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

Depth: d = log2 n

Operations: 3d

Cost: O(nlog2 3) = O(n1.58···)

49

Background: Karatsuba multiplication

x

y

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

Depth: d = log2 n

Operations: 3d

Cost: O(nlog2 3) = O(n1.58···)

49

Background: Karatsuba multiplication

x

y

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

Depth: d = log2 n

Operations: 3d

Cost: O(nlog2 3) = O(n1.58···)

49

Background: Karatsuba multiplication

x

y

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

Depth: d = log2 n

Operations: 3d

Cost: O(nlog2 3) = O(n1.58···)

49

Background: Karatsuba multiplication

x

y

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

Depth: d = log2 n

Operations: 3d

Cost: O(nlog2 3) = O(n1.58···)

49

Fast classical-quantum multiplication

Goal: U(a) |x〉 |0〉 = |x〉 |ax〉

How are we supposed to reuse values in the phase?

50

Fast classical-quantum multiplication

Goal: Apply phase φxz; x and z are quantum

How are we supposed to reuse values in the phase?

50

Fast classical-quantum multiplication

Goal: Apply phase φxz; x and z are quantum

Karatsuba:
xz = 2nx1z1 + 2n/2((x0 + x1)(z0 + z1) − x0z0 − x1z1) + x0z0

How are we supposed to reuse values in the phase?

50

Fast classical-quantum multiplication

Goal: Apply phase φxz; x and z are quantum

Plugging in Karatsuba:

exp (iφxz) = exp (iφ2nx1z1)
· exp (iφx0z0)

· exp
(
iφ2n/2((x0 + x1)(z0 + z1) − x0z0 − x1z1)

)

How are we supposed to reuse values in the phase?

50

Fast classical-quantum multiplication

Goal: Apply phase φxz; x and z are quantum

Plugging in Karatsuba:

exp (iφxz) = exp (iφ2nx1z1)
· exp (iφx0z0)

· exp
(
iφ2n/2((x0 + x1)(z0 + z1) − x0z0 − x1z1)

)

How are we supposed to reuse values in the phase?

50

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(φ) |x〉 |z〉 = exp (iφxz) |x〉 |z〉

Karatsuba:
xz = 2nx1z1 + 2n/2((x0 + x1)(z0 + z1) − x0z0 − x1z1) + x0z0

Each of these has the same structure, but on half as many qubits → do it recursively!

51

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(φ) |x〉 |z〉 = exp (iφxz) |x〉 |z〉

Re-ordering Karatsuba:

xz = (2n − 2n/2)x1z1 + 2n/2(x0 + x1)(z0 + z1) + (1− 2n/2)x0z0

Each of these has the same structure, but on half as many qubits → do it recursively!

51

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(φ) |x〉 |z〉 = exp (iφxz) |x〉 |z〉

Plugging in reordered Karatsuba:

exp (iφxz) = exp
(
iφ(2n − 2n/2)x1z1

)
· exp

(
iφ(1− 2n/2)x0z0

)
· exp

(
iφ2n/2(x0 + x1)(z0 + z1)

)

Each of these has the same structure, but on half as many qubits → do it recursively!

51

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(φ) |x〉 |z〉 = exp (iφxz) |x〉 |z〉

Plugging in reordered Karatsuba:

exp (iφxz) = exp (iφ1x1z1)
· exp (iφ2x0z0)
· exp (iφ3(x0 + x1)(z0 + z1))

φ1 = (2n − 2n/2)φ

φ2 = (1− 2n/2)φ

φ3 = 2n/2φ

Each of these has the same structure, but on half as many qubits → do it recursively!

51

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(φ) |x〉 |z〉 = exp (iφxz) |x〉 |z〉

Plugging in reordered Karatsuba:

exp (iφxz) = exp (iφ1x1z1)
· exp (iφ2x0z0)
· exp (iφ3(x0 + x1)(z0 + z1))

φ1 = (2n − 2n/2)φ

φ2 = (1− 2n/2)φ

φ3 = 2n/2φ

Each of these has the same structure, but on half as many qubits → do it recursively!

51

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(φ) |x〉 |z〉 = exp (iφxz) |x〉 |z〉

exp (iφxz) = exp (iφ1x1z1)
· exp (iφ2x0z0)
· exp (iφ3(x0 + x1)(z0 + z1))

φ1 = (2n − 2n/2)φ

φ2 = (1− 2n/2)φ

φ3 = 2n/2φ

Recursion relation: T(n) = 3T(n/2)

⇒ O(nlog2 3) = O(n1.58···) gates!

52

Fast classical-quantum multiplication

Goal: Implement PhaseProduct(φ) |x〉 |z〉 = exp (iφxz) |x〉 |z〉

exp (iφxz) = exp (iφ1x1z1)
· exp (iφ2x0z0)
· exp (iφ3(x0 + x1)(z0 + z1))

φ1 = (2n − 2n/2)φ

φ2 = (1− 2n/2)φ

φ3 = 2n/2φ

Recursion relation: T(n) = 3T(n/2) ⇒ O(nlog2 3) = O(n1.58···) gates!

52

How many qubits do we need?

Splitting registers |x〉 → |x1〉 |x0〉 and |z〉 → |z1〉 |z0〉, can immediately do

• exp (iφ1x1z1)
• exp (iφ2x0z0)

What about exp (iφ3(x0 + x1)(z0 + z1))?

Use quantum addition circuits.

But, addition is reversible → do it in-place! E.g. |x1〉 |x0〉 → |x1〉 |x0 + x1〉

With a few tricks, can use zero ancillas.

53

How many qubits do we need?

Splitting registers |x〉 → |x1〉 |x0〉 and |z〉 → |z1〉 |z0〉, can immediately do

• exp (iφ1x1z1)
• exp (iφ2x0z0)

What about exp (iφ3(x0 + x1)(z0 + z1))?

Use quantum addition circuits.

But, addition is reversible → do it in-place! E.g. |x1〉 |x0〉 → |x1〉 |x0 + x1〉

With a few tricks, can use zero ancillas.

53

How many qubits do we need?

Splitting registers |x〉 → |x1〉 |x0〉 and |z〉 → |z1〉 |z0〉, can immediately do

• exp (iφ1x1z1)
• exp (iφ2x0z0)

What about exp (iφ3(x0 + x1)(z0 + z1))?

Use quantum addition circuits.

But, addition is reversible → do it in-place! E.g. |x1〉 |x0〉 → |x1〉 |x0 + x1〉

With a few tricks, can use zero ancillas.

53

How many qubits do we need?

Splitting registers |x〉 → |x1〉 |x0〉 and |z〉 → |z1〉 |z0〉, can immediately do

• exp (iφ1x1z1)
• exp (iφ2x0z0)

What about exp (iφ3(x0 + x1)(z0 + z1))?

Use quantum addition circuits.

But, addition is reversible → do it in-place! E.g. |x1〉 |x0〉 → |x1〉 |x0 + x1〉

With a few tricks, can use zero ancillas.

53

How many qubits do we need?

Splitting registers |x〉 → |x1〉 |x0〉 and |z〉 → |z1〉 |z0〉, can immediately do

• exp (iφ1x1z1)
• exp (iφ2x0z0)

What about exp (iφ3(x0 + x1)(z0 + z1))?

Use quantum addition circuits.

But, addition is reversible → do it in-place! E.g. |x1〉 |x0〉 → |x1〉 |x0 + x1〉

With a few tricks, can use zero ancillas.

53

Making it go faster

Karatsuba

Multiply n-bit numbers via
3 multiplications of size n/2

O(nlog2 3) gates

Toom-Cook

Multiply n-bit numbers via
2k− 1 multiplications of size n/k

O(nlogk(2k−1)) gates

54

Making it go faster

Karatsuba

Multiply n-bit numbers via
3 multiplications of size n/2

O(nlog2 3) gates

Toom-Cook

Multiply n-bit numbers via
2k− 1 multiplications of size n/k

O(nlogk(2k−1)) gates

54

Complexity vs. k

Toom-Cook has asymptotic complexity O(nlogk(2k−1))

Algorithm Gate count
Schoolbook O(n2)

k = 2 O(n1.58···)

k = 3 O(n1.46···)

k = 4 O(n1.40···)
...

...

55

Complexity vs. k

Toom-Cook has asymptotic complexity O(nlogk(2k−1))

Algorithm Gate count
Schoolbook O(n2)

k = 2 O(n1.58···)

k = 3 O(n1.46···)

k = 4 O(n1.40···)
...

...

55

Depth

Parallelization is natural.

We have k sub-registers to work
with—can do k sub-products in
parallel.

x

y

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

56

Depth

Parallelization is natural.

We have k sub-registers to work
with—can do k sub-products in
parallel.

x

y

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

56

Depth

k = 3:

Q
FT

IQ
FT

Q
FT

IQ
FT

Q
FT

IQ
FT

Depth is O(nε) where ε = logk 2, using O(n/ log n) ancillas.

57

Depth

k = 3:

Q
FT

IQ
FT

Q
FT

IQ
FT

Q
FT

IQ
FT

Depth is O(nε) where ε = logk 2, using O(n/ log n) ancillas.

57

Some things I’ve worked on

Fast quantum
integer multiplication

GDKM, N. Yao. arXiv:2403.18006

Log-depth "optimistic" QFT
with no ancillas

GDKM, J. Blue, T. Bergamaschi, C. Gidney,
I. Chuang. arXiv:2505.00701

A sublinear space and depth
factoring algorithm

GDKM, S. Ragavan, V. Vaikuntanathan,
K. Van Kirk. arXiv:2412.12558

Shor's algorithm with:

58

