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Abstract

Exploring the Limits of Classical Simulation:
From Computational Many-Body Dynamics to Quantum Advantage

by

Gregory Donald Kahanamoku-Meyer

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Norman Y. Yao, Chair

For many years after the dawn of computing machines, it seemed to be the case that the
dynamics of any physical system (including all computers, which of course are physical
systems themselves) could be efficiently simulated by a simple model of a computer called the
Turing machine. A consequence was that computational problems that were found to be hard
for Turing machines—those requiring a runtime superpolynomial in the size of the input—
remained hard no matter what machine was built to solve them. But in the latter part of the
20th century, an intriguing counterexample emerged: quantum mechanics. The simulation of
straightforward quantum systems seemed to have an exponential computational cost. This
led to a provocative question: what if one were to build a computer from quantum mechanical
components? Could that machine outperform the Turing machine, and efficiently simulate
arbitrary quantum processes? And are there other hard problems that such a machine could
efficiently solve?

In this dissertation we explore several questions stemming from those ideas. First, classical
simulation of quantum many-body physics may be hard, but modern supercomputers are
extremely powerful—with cutting-edge innovations in both hardware and algorithms, what
quantum simulations can be achieved, and what physics can we learn from them? Second,
while there has been astounding progress in the development of quantum computers, they
are still small and noisy—what can we do on these near-term devices, that cannot be done
with the powerful classical supercomputers just described? Furthermore, if we do a quantum
mechanical computation that seems to be infeasible for even the fastest classical machines,
how do we check that the result is actually correct? Answering these questions requires
deeply exploring the physical nature of computing; at heart, it comes down to the beautiful
puzzle of organizing the physical world around us to process information.
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Chapter 1

Introduction

All computers are just carefully organized sand.
— Randall Munroe, xkcd.com/1349

In the lobby of the Stata Center at MIT sits a wooden contraption that has an appearance
somewhat akin to an oversized pinball machine. The sloped surface contains a number of
barriers, holes, and movable toggles that can be set to the left or the right. In a slot at the
top sit a set of billiard balls. Passersby may find a clue to the device’s purpose in the labels
next to some of the toggles, such as “COUNT,” “MULTIPLY,” and “MEMORY REGISTER.”
It is a mechanical calculator called the DIGI-COMP II. By flipping the toggles one can input
numbers and choose an arithmetic operation to perform. With the computation set, the user
releases a billiard ball down the slope. As it weaves its way through the various elements
on the surface of the board the ball will flip various toggles, until it reaches the bottom and
causes another ball to release from the top. This next ball will follow a new path due to the
action of the previous one, flipping yet more toggles and eventually releasing yet another
ball. Eventually the position of the toggles will be such that new balls will stop rolling
down the slope, and the operation will halt. In what may seem a miracle to the uninitiated,
the user will find that the toggles now show the mathematical result—the sum, difference,
product, or quotient of the numbers that were input at the start!

While the physical nature of computing is particularly obvious in the DIGI-COMP II,
this is broadly how all computers work. Most of them use electrons instead of billiard balls,
but the general principle of operation is the same: data is input via the physical manipulation
of part of the device and then the physics of the system evolves forward in time, ultimately
resulting in a physical output that can be interpreted by a human (or perhaps cause some
other useful effect in the world). Of course, in modern times, these physical processes are easy
to forget, or at least ignore: the size of the smallest features in semiconductor chips being
manufactured in 2023 is a few nanometers—roughly the diameter of the helical structure of
DNA! Yet even if we do not think about it, we all still intuitively know that computations are
physical processes happening inside the devices we use every day—a fact that somehow feels
simultaneously obvious and surprising. When watching a high-resolution video, we may find
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that our device gets hot, as energy gets expended by the operations required to update each
of the millions of pixels 60 times every second. If we let the video play for long enough, we
may need to recharge the device’s battery by physically connecting it to a source of energy,
which otherwise could power a vacuum cleaner or a lamp. More directly, if we put a photo
album on a USB thumb drive, we know the photos are somehow in it, in a very physical
sense—if we carry the drive to a friend’s house, or send it through the mail, or throw it off
the Golden Gate Bridge, the photos go with it. Ultimately, computing is physics, and the
task of building (and using) computers corresponds to applying the laws of physics to very
carefully organize the matter around us in such a way that it can encode and manipulate
information.

Hiding the physical nature of computing has been crucially important, however, for facil-
itating the development of the diversity of computing devices that surround us today. When
we open an email, or tap an Instagram ad for a sunflower-shaped dog costume, the abstract
result should not depend on the specific physical processes that occur. On any of the myriad
models of smartphone, tablet, laptop, or whatever else, which at a low level may operate
with dramatically different computational building blocks, we will see the email’s contents,
or have 30 fewer dollars in our bank accounts, respectively. This abstraction applies even for
most software developers: the advent of compilers in the mid-20th century created a sepa-
ration between the creation of programs and their execution, allowing code to be written in
a universal language like Fortran or C, and only later compiled into the specific, individual
operations used by a particular processor. It is not an exaggeration to say that modern
computing could not exist without it.

The intellectual foundations of this idea were laid by a brilliant insight of Alan Turing
and others in the 1930s. Turing proposed a simple abstract model for a physical system
that can compute any function that is computable at all—a device soon termed a “Turing
machine.”1 This led to the concept of Turing completeness : given a computational system,
it is Turing complete if it can be configured to simulate a Turing machine, which implies
that it can compute any computable function. Over the succeeding decades, this idea was
extended to explore not only which functions can be computed, but how efficiently it can
be done. Astoundingly, computer scientists found that no matter how they designed a
computer (within the laws of physics), Turing’s simple, abstract construction could simulate
it efficiently. Viewed from another perspective, they found that the set of mathematical
problems that are possible but inefficient for a Turing machine to compute remain stubbornly
inefficient no matter what computational system is used. This idea has been termed the
extended Church-Turing thesis. [1]

However, hints that this may not represent the full story began to emerge near the end
of the 20th century, when scientists began to consider the prospects of simulating quantum
mechanics using computers. In a foundational talk in 1981, Feynman pointed out that

1To be precise, this depends on one’s definition of “the set of computable functions;” Turing showed
that the set of functions his machine could compute was equal to the that of two other contemporaneous
definitions of computability. In modern theoretical computer science, computability is in fact usually defined
in terms of Turing machines.
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unlike in the simulation of classical physics, fully describing the state of a quantum system
seems to require manipulating an exponential number of values—a task that certainly is not
efficient. He proposed that instead of using standard computing hardware, perhaps such
a simulation could be performed efficiently on a new type of computer, itself built from
quantum mechanical parts. Such a device would constitute a clear violation of the extended
Church-Turing thesis. This led to an extremely provocative further question: are there other
problems, not directly related to quantum mechanics, that are hard for Turing machines
but can be computed efficiently using a machine built from quantum mechanics? Just
13 years later, Peter Shor stunned the world of computer science by giving a fast quantum
algorithm for factoring numbers—a computational problem that had been the target of efforts
by number theorists for millennia. (In fact, factoring, and the related discrete logarithm
problem, were considered to be hard with such certainty that their hardness has been used
as the backbone of much of digital security. This fact has played a large part in the interest of
national governments in quantum computing.) After Shor’s work, research efforts in the new
field of quantum computing increased dramatically, both with intense experimental work to
physically construct such devices and theoretical efforts to develop new algorithms that could
run on them.2 Yet despite the gargantuan efforts made over the past few decades, quantum
computing remains stubbornly difficult. As of yet, the physical quantum computers that
have been constructed are only beginning to pass the cusp of what can be simulated with
modern classical supercomputers, and even so, while a wide array of theoretical applications
have been proposed, finding realistic and useful problems for which these first small, noisy
quantum machines can meaningfully improve on the performance of classical computers has
remained elusive. To put things in perspective, the current record for integer factorization
via Shor’s algorithm seems to be the factorization of 21 as 7 × 3 in 2012, [4] but even that
record had its validity soon called into question [5].3

As a result of all of this, we find ourselves at an exciting time for quantum science.
In terms of looking for new physics in many-body quantum systems, we are at a juncture
where modern supercomputers and cutting-edge experiments can simulate quantum systems
of roughly similar complexity. Each technique has its own strengths, and the ability to
look for new physical phenomena in numerical simulations and then explore them further
with experiments, or vice versa, has proven extremely powerful, leading to the discovery
of new phases of matter and new insights into quantum materials. Encouragingly too,
both experiments and numerics have improved rapidly over the past few decades. On the
quantum computing side, despite the current lack of a “killer application” for the near term,
the astounding progress in the precise control of quantum systems holds promise. It has been

2For in-depth yet personal discussions of the history of quantum computing, we recommend the recent
retrospectives by Peter Shor and John Preskill. [2], [3]

3There are so-called “variational” quantum factoring algorithms which have been used to demonstrate
factoring of somewhat larger numbers than 21 on near-term quantum devices. However, these algorithms
become inefficient rapidly as the numbers get larger and would not be useful at all for factoring numbers
larger than what can already be done with classical computers, even if a large error-free quantum computer
could be constructed.
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said that when algorithms can only run in one’s imagination, it is very difficult to develop
them; we are finally reaching the point where those designing quantum algorithms can move
off the blackboard and play with real quantum devices. With any luck, this will lead to the
exploration of new directions that we have not yet imagined.

This dissertation focuses on the implications of the difference in computational power of
classical and quantum systems, and how they can interact with each other. For the rest of
this chapter, we give an overview of some of the foundational ideas upon which this work
relies. The discussion is targeted at a reader who is knowledgeable of physics, but perhaps
new to the subfields being discussed. It does not endeavor to go deeply into technical details,
but instead to give a broad intuitive landscape of the techniques currently being used to make
progress in these fields. Hopefully this can serve as a resource for early graduate students
looking to study these topics.

After the introduction, this dissertation is divided into two parts. In the first part, we
examine how, despite the complexity-theoretic hardness of classically simulating quantum
mechanics, the tools of modern supercomputing can be used to simulate quantum systems
of sufficiently large size that meaningful scientific insight can be produced. In Chapter 2,
we present a numerical library called dynamite, which has a simple and intuitive program-
matic interface for performing numerical simulations of many-body quantum systems, but is
very powerful, with the capability to accelerate the computations via massive parallelism on
supercomputers and graphics processing units (GPUs). In Chapter 3 we present the imple-
mentation of algorithmic and practical innovations targeting a specific many-body physics
problem, that of “many-body localization” (MBL). Our approach dramatically reduces the
memory usage compared to previous works, enabling the analysis of larger physical systems
with less resources. In an amusing connection to the physicality of computing, for both these
chapters the work required moving past the compiler abstractions described earlier, instead
incorporating knowledge of the physical characteristics and low-level operations of the com-
pute hardware upon which the code would run in order to eke out as much performance as
possible.

In the second part, we focus on a subtlety of the ongoing race to build quantum com-
puters: if a quantum device claims to be able to perform computations that no classical
computer can, how can we verify that it actually has done so? What if we do not trust the
quantum device, either because its behavior is not well characterized, or because we do not
trust the humans behind it? In Chapter 4, we examine a proposal from 2008 for a “proof
of quantumness” by which a quantum prover can convince a skeptical classical verifier of
its capability to perform computations that would be infeasible classically. We break the
protocol, showing that there in fact exists an algorithm by which a classical cheater could re-
produce the behavior of an honest quantum prover in the protocol, which destroys the test’s
guarantee that the prover is quantum. In Chapter 5 we propose a new proof of quantumness
protocol in which classical cheating is provably as hard as factoring integers, avoiding the
pitfalls described in the previous chapter. The new protocol can be implemented with less
quantum resources than Shor’s algorithm, yielding potential for its real-world use in the
time before quantum computers are capable of running algorithms as complex as Shor’s. In
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Chapter 6, we present the results of a first, small-scale demonstration of that proof of quan-
tumness protocol (and another related protocol) on an ion-trap quantum computer. The
results represent a technological step forward, as they involve performing measurements in
the middle of a set of quantum operations and then continuing operation afterwards. These
mid-circuit measurements have historically proven to be extremely technically challenging to
implement, and open the door to important new paradigms of quantum computing such a
real-time error correction. In Chapter 7, we present a novel construction for quantum circuits
implementing integer multiplication—a key ingredient for both the proofs of quantumness
just described, and for Shor’s algorithm itself. We show that the math behind fast multipli-
cation algorithms which have been known for decades in the classical setting can be applied
to an inherently quantum multiplication method which uses the phases of quantum states
to perform arithmetic. Furthermore we show that a considerable fraction of the work can
be performed in classical pre-computation when the quantum circuits are being compiled.
The construction dramatically reduces the number of extra qubits used, while remaining
competitive in the number fo quantum operations required. Finally, in Chapter 8, we give
concluding remarks and look towards the future.

1.1 Numerical studies of many-body quantum systems
The study of many-body physics has been known for centuries to be challenging, even in the
classical setting. Long before the advent of quantum mechanics, in studying the collective
motion of the Sun, Moon, and Earth, physicists found (and eventually proved) that the
dynamics of just three masses interacting via Newtonian gravitation did not have a general
closed form solution. Worse, many of the physical systems relevant to our everyday lives
have far more than 3 particles—a teaspoon of water contains roughly 1023 molecules! Clearly,
directly solving for the dynamics of each individual molecule is out of the question.

Until the mid- to late-20th century, there were only two main strategies available for
treating many-body systems. The first is to find specific cases that are solvable, and then
leverage them to find approximate “nearby” solutions as well. (For the three-body orbit
problem, an example of this is approximating one of the bodies as having zero mass in
comparison to the other two, which is frequently appropriate in real astrophysical scenarios.)
The second, which is appropriate for systems of very many particles and is used in the
fields of statistical and fluid mechanics, is to not focus on the dynamics of each individual
particle but to instead find a description of their collective behavior as a whole. These tools
allowed physicists to make an astounding amount of progress, but certain questions remained
impervious to these methods.

In the past several decades, a powerful new tool has come onto the scene: modern
computers, capable of performing billions of mathematical operations per second, with which
the dynamics of many interacting particles can be computed numerically! In the classical
case, thousands or even millions of particles can be simulated at once, providing a good
approximation of the thermodynamic limit of infinite system size. Quantum many-body
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physics, however, presents yet another challenge: the exponential size of the Hilbert space
as a function of the number of particles. Consider of a collection of L quantum particles,
each with just a two-dimensional local Hilbert space (for example, spin-1/2 particles without
any other degrees of freedom). Their collective wavefunction is a vector4 in a Hilbert space
of dimension 2L—over 1,000 for a collection of just 10 particles, and over 1,000,000 for 20
particles. This is the practical manifestation of the exponential complexity of classically
simulating quantum mechanics discussed earlier in the introduction: informally, the cost of
simulating 1,000,000 classical particles can be compared to the cost of simulating just 20
quantum ones.

Considering this fact, and Feynman’s point that quantum computers may be better suited
for simulating quantum mechanics than classical ones, one might ask why classical simulation
of quantum mechanics is worth it in the first place. There are three main benefits, by which
numerical study has proven invaluable in the study of quantum many-body physics. First, a
classical simulation allows one to interrogate the behavior of a quantum system under ideal
conditions. The noise that is ever-present in experiments (and has particularly been the bane
of those attempting to build quantum computers) can simply be turned off in a simulation.
This can be hugely helpful in assessing whether an observed effect is real or simply due to
imperfections of the experiment. Secondly, the development process is usually much faster.
Depending on the software used for simulation, it can be possible to arbitrarily adjust the
interactions between particles, or the physical geometry of the system, or any of a number
of other parameters, at the press of a button—adjustments which may require considerable
effort to implement in an experiment, if they are possible at all. (Indeed, the goal of the
software library we present in Chapter 2 is precisely to make such simulations as easy and
quick as possible!) Finally, and most importantly, classical simulation gives access to data
which simply is inaccessible in a real quantum experiment. Performing measurements on
quantum states causes wavefunction collapse—by Holevo’s theorem, even though L spin-1/2
particles have a state vector of dimension 2L, the number of classical bits of information
that can be extracted by measuring that wavefunction is only L! Meanwhile, in a classical
simulation, arbitrary functions of the state vector can be computed. This is particularly
important for “non-observable” quantities such as the entanglement entropy of a state, which
in an experiment cannot always be estimated with good statistics without performing an
exponential number of trials.

1.1.1 How to represent a quantum state in a classical computer

Having hopefully convinced the reader of the merits of pursuing classical simulation of quan-
tum many-body physics, as difficult as it may be, we now move on to discussing the first
necessary step to performing numerical simulations: representing a quantum state on a clas-
sical computer. Much work has been done exploring various strategies for this. Here we
discuss two that are most commonly used: storing the state vector explicitly as an array of

4Technically a ray, since the normalization is not physically important.
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complex numbers, and tensor network methods. We note that there exist a wide range of
other techniques whose use is somewhat less widespread. These include, for example, stabi-
lizer states, which can efficiently represent states generated by quantum circuits of Clifford
gates (and “nearby” states) [6], [7]; and neural network states, in which a neural network is
trained to produce the coefficients of the state vector [8], [9].

In the below, we will consider quantum systems consisting of L two-level systems. The
Hilbert space is mathematically represented by the space C⊗L

2 . We consider a pure quantum
state |ψ⟩ on this Hilbert space, that we desire to represent numerically. We do not cover
here the various techniques for numerically representing and computing with mixed states;
however, we note that models with noise can be simulated with pure states, for example via
the formalism of “quantum trajectories.” [10]

1.1.1.1 Vectors of coefficients

The most straightforward way to represent such a state numerically is by picking a set of
basis states |ϕi⟩ that span the Hilbert space, and storing an array of complex numbers ci
such that |ψ⟩ = ∑i ci |ϕi⟩. The obvious challenge with this strategy is that the number of
ci that must be stored is equal to the dimension of the Hilbert space, which is exponential
in L. To give a sense of scale, with 1 Terabyte of RAM (achievable with a few nodes of a
modern computer cluster), and complex numbers stored as a pair of 8 byte floating point
numbers, one can represent a system of log2(1 Terabyte/16 bytes) ≈ 35 spins—not a huge
number, but certainly large enough to see many-body collective behavior in certain systems.
Despite the limitation to moderate system sizes, the power of this representation is that it
can describe entirely arbitrary quantum states. This benefit is often worth the exponential
cost—indeed, this is how states are represented in the numerical work of Chapters 2 and 3.

From an information-theoretic perspective, an exponential number of classical bits is
simply required to represent arbitrary quantum states, because the space of quantum states
is exponentially large. Fortunately, in many physical situations, the states of interest are
likely to not be entirely arbitrary but to belong to some subspace of the larger Hilbert space,
and if we can find a more efficient way of representing the states in that subspace it becomes
possible to handle larger system sizes. One application of this idea, which is used widely, is
to use conservation laws to divide the Hilbert space into the direct sum of several smaller
subspaces. As an example, the Hamiltonian governing the dynamics of a system of quantum
spins might conserve their total magnetization in a particular direction. In that case we
can ensure that we choose a set of basis states for which that magnetization operator is
diagonal, and break the Hilbert space into “sectors” each with a different magnetization. In
this case, for spin 1/2 particles with zero total magnetization, our 1 Terabyte of RAM can
store the state vector of 38 spins with the total magnetization set to zero, as opposed to
the 35 spins that were possible in the general case. (The zero magnetization subspace has
the largest dimension; for different values things improve even more.) Note that this specific
conservation law is implemented in both Chapters 2 and 3; a number of other conservation
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laws are frequently used in physics studies and several more are implemented in the dynamite
package presented in Chapter 2.

Even with conservation laws that allow us to ignore a large fraction of the Hilbert space,
the number of coefficients that must be stored usually remains superpolynomial in the system
size. We now move on to discussing a way of representing quantum states using only a
polynomial amount of data—so called “tensor networks.”

1.1.1.2 Tensor networks

In the previous section, we reduced the size of the effective Hilbert space by only consider-
ing states with a given value of a conserved quantity; the intuition behind tensor network
representations of quantum states is to focus only on states with low entanglement. This
idea is well-motivated because the states encountered in physics studies frequently have this
property—for example, this is the case for the ground states of a large class of Hamiltonians.
The challenge, of course, is to find a way of representing low-entanglement states such that
they can be stored, and manipulated, efficiently. Tensor networks attempt to do just that.

A number of extensive, pedagogical introductions to tensor network methods have been
written to which I would direct any reader interested in deeply exploring this topic; [11]–[13]
instead of creating yet another (probably of worse quality) I instead here will give a high-
level overview of their structure, as I like to view it. My hope is that it can be helpful in
building intuition for those whose mathematical style is similar to my own.

The broad idea is based off of the Schmidt decomposition. Consider a quantum system
with two parts, which we denote A and B, with local Hilbert spaces HA and HB of dimension
n and m respectively. In general, we may write the global state of the system in terms of
any orthogonal sets of basis vectors {|ai⟩} and {|bj⟩}, as |ψ⟩ =∑ij cij |ai⟩ |bj⟩. The power of
the Schmidt decomposition is that it shows how to construct particular orthonormal bases
{|αi⟩} and {|βi⟩}, and coefficients si, such that the sum only needs to run over a single index:

|ψ⟩ =
∑
i

si |αi⟩ |βi⟩ (1.1)

Viewed another way, it finds a basis for HA and HB such that the cij are only nonzero when
i = j. At first this seems too good to be true: we are representing a quantum state on the
global Hilbert space, which has dimension mn, using only min(m,n) coefficients! Alas, there
is no free lunch; the trick is that the basis vectors {|αi⟩} and {|βi⟩} are themselves dependent
on |ψ⟩, and so must be stored explicitly. The real benefit of the Schmidt decomposition comes
when we consider entanglement.

Recall the definition of the von Neumann entanglement entropy of subsystem A, denoted
as SA. It is a function of ρA = TrB|ψ⟩, the reduced density matrix of subsystem A when B
has been removed via a partial trace.

SA = −Tr [ρA log ρA] (1.2)
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It is straightforward to see from the definition of the partial trace, and the orthonormality of
the basis vectors {|αi⟩} and {|βi⟩}, that the Schmidt decomposition diagonalizes the density
matrix:

ρA =
∑
i

s2i |αi⟩ ⟨αi| (1.3)

and thus the entanglement entropy can be written straightforwardly in terms of the si:

SA = −
∑
i

s2i log(s
2
i ) (1.4)

Careful inspection of this expression, combined with the fact that
∑

i s
2
i = 1, yields a powerful

fact: informally, if the entanglement entropy SA is small, then only a few of the si are non-
negligible! This suggests the following approximation: for some cutoff ϵ, simply drop the
terms of Eq. 1.1 for which si < ϵ.

|ψ⟩ ≈
∑
i

si≥ϵ

si |αi⟩ |βi⟩ (1.5)

If most of the si are smaller than ϵ, we may only need to store a small number of tuples
(si, |αi⟩ , |βi⟩). The intuition here is really nice: if there is no entanglement between the
two parts, then the state is trivially the tensor product of a pure state on each part: |ψ⟩ =
|ψA⟩ |ψB⟩. The Schmidt decomposition allows us to see that this is the most extreme case
of a more general fact, that low-entanglement states are well approximated by a linear
combination of just a few tensor products of that form.

Let’s now look at how this can be applied to our system of L two-level spins, arranged
in a 1D chain. Let system A be the leftmost spin, and system B be the remainder of the
chain. Since HA has dimension two, applying the Schmidt decomposition, we will get two
tuples (si, |αi⟩ , |βi⟩) where the two |αi⟩ are vectors each of dimension 2 and the two |βi⟩
are vectors of dimension 2L−1. The key to making this useful is that we may now apply
the Schmidt decomposition again, to the vectors |βi⟩! Letting our new subsystem A′ be
the second-to-leftmost spin and B′ be the remaining spins on the right, we now get a total
of 4 tuples (s′i, |α′

i⟩ , |β′
i⟩)—two from each of the two |βi⟩. The |αi⟩ are once again each of

dimension 2, and the |βi⟩ are now of dimension 2L−2. We may continue this plan across the
entire chain of spins, ultimately decomposing our state |ψ⟩ into a collection of sets of basis
vectors, each of dimension 2. The benefit is obvious—we are never storing any vectors larger
than dimension 2! The downside is that without any truncation, the number of such basis
vectors grows exponentially with the distance from the end of the spin chain. However as
discussed above, for states with low entanglement, we can drop most of the vectors since
their associated si are small. In fact, for states without extensive entanglement, we need
only keep a constant number of vectors on each spin to achieve a good approximation of ψ.
This constant is called the “bond dimension” and is usually denoted by χ.

The construction just described is called a matrix product state (MPS). The standard
way of viewing it is as a tensor network : a set of tensors, each one representing the set of
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basis vectors associated with each spin, with “bonds” between them corresponding to the
shared indices i in the sum of Eq. 1.1. It turns out the linear chain of tensors we have
described so far is just one of a large class of methods for representing quantum states via
tensor networks. This has yielded new ways of representing states with different physical
geometry of the interactions, and different entanglement structures—well-known examples
include Projected Entangled Pair States (PEPS) and Multiscale Entanglement Renormaliza-
tion Ansatz (MERA). [13], [14] Moving past the case of a 1D physical system is a challenging
pursuit, with surprising pitfalls such as constructions that can efficiently represent certain
quantum states accurately, but for which actually computing any quantities of interest is
exponentially computationally hard! This is an active area of research, and we direct the
interested reader to any of the extensive reviews on the subject. [11]–[13]

1.1.2 Simulating quantum dynamics

Having discussed various ways of representing quantum states on classical computers, we
now turn to performing computations on them. The most obvious operation of interest
is the numerical simulation of their evolution through time. Consider a quantum system
with some Hamiltonian H(t) (with the argument making explicit that the Hamiltonian may
depend on time). This time evolution is represented mathematically by the time evolution
unitary U(t, t0) that corresponds to the solution to the time-dependent Schrodinger equation

∂

∂t
U(t, t0) = H(t)U(t, t0) (1.6)

For a time-independent Hamiltonian, the solution has a straightforward form:

U(t, t0) = e−iH(t−t0) (1.7)

For a time-dependent Hamiltonian, things are a bit more complicated. A classic mistake
made by those new to the field is to write U(t, t0) as

U(t, t0) = e
−i

∫ t
t′=t0

H(t′)dt′

which at first glance looks great—the time evolution should correspond to the cumulative
effect of the Hamiltonian acting from time t0 to time t. (It feels like a rite of passage to
screw this up! I certainly did at least once early in my research.) But it is incorrect, which
can be seen as follows. Consider a simple time-dependent Hamiltonian which consists of a
static Hamiltonian HA acting for time tA followed by another static Hamiltonian HB acting
for time tB. The evolution over one cycle of time tA + tB is (correctly) described by the
unitary

UAB = e−iHBtBe−iHAtA (1.8)

which is crucially not necessarily equal to e−i(HBtB+HAtA)—that equality only holds if HA

and HB commute! To account for the fact that H(t) may not commute with itself for all
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times t, one must use what is called the time-ordered exponential, which is denoted thus:

U(t, t0) = T {e−i
∫ t
t′=t0

H(t′)dt′} (1.9)

The precise definition and use of the time-ordered exponential is out of the scope of this
introduction, but it turns out we will not need it for our numerical purposes: during my
research, the best strategy has essentially always been to simply break up the time-dependent
Hamiltonian into a piecewise time-independent one, computing each piece separately as in
Equation 1.8. Thus for the rest of this section we will discuss how numerical time evolution
under a static Hamiltonian H is performed.

The most straightforward way of implementing time evolution is to simply create a nu-
merical representation of H as a matrix, and compute U via the matrix exponential (Eq. 1.7).
This can be done via a matrix exponential algorithm (e.g. via the linalg.expm() function
of the SciPy library); however, in my experience, for larger system sizes it is actually faster
to solve for the eigendecomposition H = V ΛV †, where V is a matrix whose columns are
the eigenvectors and Λ is the diagonal matrix of the eigenvalues. The unitary can then be
computed by exponentiating Λ, which is very straightforward because it is diagonal—one
simply exponentiates each eigenvalue separately. This strategy is particularly efficient if the
unitary is required at many different times t, because the eigendecomposition only needs to
be performed once.

The benefit of explicitly computing the unitary is that, well, one has an explicit represen-
tation of it! With that one can easily determine its action on arbitrary state vectors, or even
on mixed states. Explicitly computing U is very costly, however: it is a square matrix of the
same dimension as the Hilbert space, meaning that even just storing it requires computer
memory proportional to the Hilbert space dimension squared—without the use of conserva-
tion laws, it becomes impractical for systems of more than just 16 spins or so. Fortunately,
it is almost always overkill—the only instance I have ever encountered in which it has been
necessary to explicitly compute U is in the study of Floquet systems, where the eigenvalues
of U represent “quasi-energies” that are physically relevant. In virtually all other cases, what
we are really interested in is the action of U on a state.

The hope that computing U |ψ⟩ for some state |ψ⟩ may be more efficient than computing
U in full is well-motivated if we consider the Taylor expansion of U |ψ⟩ in t:

U |ψ⟩ = e−iHt |ψ⟩ = |ψ⟩ − iHt |ψ⟩ − H2t2

2
|ψ⟩+ · · · (1.10)

If t is small, the norm of each term of the expansion is exponentially smaller that the last,
and we may obtain a good approximation of U |ψ⟩ with only a small number of terms.
Importantly, it is possible to compute this expansion while only storing three vectors: one to
hold the result, and two more in which |ψ⟩, H |ψ⟩, H2 |ψ⟩, etc. are computed in alternating
fashion. (Depending on the specifics of the situation, it may even be possible to reduce this
to fewer than three, if the multiplications of the state by H can be performed in-place).
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Of course, we are usually interested in time evolution for longer times t than those for
which this expansion is well-controlled. In that case, we may consider the following exact
decomposition

e−iHt =
(
e−iHt/n

)n
(1.11)

That is, we can break down the total evolution over a time t into n evolutions of time
t/n. If n is sufficiently large, each of these smaller time evolutions are in the regime in
which the above expansion is well-controlled, and thus the error is well-controlled across the
entire evolution. This idea forms the backbone of a number of algorithms for time evolution
of states, whether they are represented explicitly as a vector of coefficients, or via matrix
product states.

In Time-evolving Block Decimation, an algorithm for time-evolving matrix product states,
it is observed that if the expansion in Eq. 1.10 is truncated after the first order in Ht, the
operators that need to be applied have support on at most two sites at once—and thus only
need to be applied to at most two tensors of the matrix product state, which is efficient for
matrix product states in which the bond dimension is not too large. As long as the entan-
glement remains small throughout the time evolution, terms of the Schmidt decomposition
can continuously be truncated throughout the process (as in Eq. 1.5) while maintaining a
good approximation of the state. [12]

For states stored as vectors of coefficients, as in Section 1.1.1.1, the strategy of Eq. 1.10
can be improved through the use of so-called Krylov subspace methods. This type of algorithm
forms the backbone of the numerical package dynamite presented in Chapter 2, and a detailed
exposition is provided there; for now, we will give the broad intuition. Instead of explicitly
computing the sum Eq. 1.10, Krylov methods compute an orthonormal basis for the subspace
span{|ψ⟩ , H |ψ⟩ , H2 |ψ⟩ , · · · , Hm−1} up to some cutoff m (say, 30). Then, the matrix H
is projected into this small subspace and U is computed explicitly in the small m × m
dimensional space. Using this, the vector U |ψ⟩ is computed and then projected back into
the original Hilbert space. It is clear by inspection that this strategy will do at least as
well as Eq. 1.10 for the same order of approximation n, but it turns out that in practice it
usually does much better because it includes the parts of high-order terms of U that also fall
in the subspace. As before, it may be useful for larger t to break the evolution down into
n evolutions of a shorter time t/n, and compute each of these shorter evolutions with the
method just described.

1.1.3 Eigensolving

Another operation that is widely relevant for physics studies is solving for the eigenvalues and
eigenvectors of a Hamiltonian. The eigenvalues determine the energy levels of the system,
and eigenstates provide insight into its physical characteristics. In many cases the ground
state and first few excited states are particularly important, as they determine the system’s
behavior at low temperature.
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Once again, the most straightforward way to find the eigenvalues and eigenvectors of
a quantum operator is to numerically construct the Hamiltonian and then apply a generic
matrix eigensolver (e.g. numpy.eigh()). But like in the time evolution case, this is simulta-
neously very expensive, and usually overkill. In situations where we only need the low-lying
states, we can use the variational method. The idea is that for a given Hamiltonian H, the
energy of any state |ψ⟩ is lower-bounded by the energy of the ground state—and if we can
optimize |ψ⟩ to have as low an energy as possible, we can find a good approximation of the
ground state energy (and hopefully of the ground state itself).

For matrix product states, the classic way of doing this is via the Density Matrix Renor-
malization Group (DMRG) algorithm. Informally, the idea of DMRG is to sweep back and
forth across the tensors of the matrix product state, minimizing the energy at each step by
locally optimizing over each one. By doing several sweeps in this way, the state becomes a
better and better approximation of the true ground state; if the true ground state has low
entanglement (and thus can be well-represented by a matrix product state), in practice it
can usually be converged with only a few sweeps. [11]–[13]

For states stored as vectors of coefficients, we may use any of a number of optimization
algorithms to attempt to find the vector |ψ⟩ with the lowest value of ⟨ψ|H |ψ⟩. The most
frequently used methods build off of the intuition of the power method for eigensolving. Con-
sider a uniformly random vector, which can be written in the basis of the eigenvectors |ϕi⟩ of
H (which are as of yet unknown): |ψr⟩ =

∑
i ci |ϕi⟩. Observe that repeatedly multiplying this

vector by H exponentially enhances the eigenvector corresponding to the largest magnitude
eigenvalue: Hm |ψr⟩ =

∑
i λ

m
i ci |ϕi⟩. By shifting the zero point of energy we may ensure that

the largest magnitude eigenvalue is the most negative one, and thus this method will con-
verge the ground state! The power method is not usually used directly, because there exist
algorithms which are based on the same intuition but converge even more quickly—a class of
methods called iterative eigensolvers. These include the Lanczos algorithm, Krylov subspace
methods more generally (as described earlier for time evolution), and others. Chapters 2
and 3 make extensive use of these iterative-type eigensolvers, and detailed descriptions of
how they work can be found there.

1.2 Quantum advantage
As it stands, the central concern of quantum computing is, of course, whether it can outper-
form classical computing—a goal termed “quantum advantage.” But determining where and
if quantum advantage is possible, and before that, even clearly defining it, is a surprisingly
subtle pursuit. On the theoretical side, a wide array of algorithms have been discovered that
solve various problems in asymptotically fewer operations on a quantum computer versus a
classical one.5 But translating these algorithms into a speedup observable in practice has

5In fact, this point is subtle too. Explicit proofs of a lower bound of the cost of solving a problem on
a classical computer are hard to come by, so these algorithms usually correspond to speedups over the best
known classical algorithm.
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proved very difficult. A main challenge is that modern classical computers are extremely
fast, in terms of the number of operations they can perform per second. Today’s top super-
computers can achieve exascale performance: 1018, or one quintillion, 64-bit floating point
operations per second! Meanwhile, most modern quantum experiments are limited to a few
hundred or thousand quantum gates total before noise destroys the quantum state. Even
ignoring noise, the cycle time of modern quantum computers is something between 104 and
108 gates per second depending on the platform, dramatically slower than their classical
counterparts.

To demonstrate a speedup in practice, the algorithmic gain from using quantum hard-
ware must outcompete this extreme disadvantage in cycle time. It is clear that quantum
algorithms which only reduce the number of operations by a polynomial amount—say re-
quiring

√
N operations when the classical computer needs N—will not close the gap without

revolutionary improvements in quantum technology. Instead, near term quantum advantage
requires algorithms which provide a superpolynomial speedup, ideally the fully exponential
speedup corresponding with the classical complexity of simulating quantum mechanics itself.
A few of the classic quantum algorithms, in particular Shor’s, do exhibit this dramatic su-
perpolynomial improvement over the best known classical algorithm for the same problem.
Unfortunately they are quite complicated to implement, and so remain far out of reach of
near-term quantum devices. For these reasons, the pursuit of experimental quantum ad-
vantage has required the devising of new computational problems and associated quantum
algorithms, which are as undemanding as possible for a quantum computer yet as costly as
possible for a classical one.

Note that here we will focus on quantum advantage in computational cost, broadly de-
fined but with a focus on runtime. The setting to keep in mind is that of a quantum device
connected to a classical computer. The classical computer sends the quantum device com-
mands (usually the quantum gates to perform), and receives some classical data back. A
weak version of the goal is that if the quantum device is replaced by a classical machine of
comparable resources—say, in size, energy usage, and computation time—it should be un-
able to reproduce the computation performed by the quantum device. The strongest version
of quantum advantage, which is the one pursued by most of the research described next,
is that no classical machine, not even the world’s fastest supercomputers, can reproduce
the quantum device’s behavior, given any practical amount of computation time and other
resources.

1.2.1 The first experimental demonstrations

The problem of finding specific computational tasks for demonstrating quantum advantage
in practice did not receive much attention until recently, because quantum devices were so
small and noisy that they could be easily simulated by classical computers no matter what
operations they performed. But in the past few years, quantum hardware has improved
to the point that at least direct classical simulation has become infeasible—leading to the
exploration of whether there was some computation, perhaps contrived and not necessarily
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useful, in which a speedup could be experimentally observed. Theoretical work along these
lines led to the conclusion that the most achievable way to show quantum advantage would
not be to solve a problem with a deterministic answer (like “factor this integer”) but instead to
solve a sampling problem: given some data that defines a probability distribution, the task is
to generate (perhaps approximately) samples from that distribution. [15]–[23] By defining the
target probability distribution to correspond to the distribution of measurement results for
a particular quantum state, produced by running a quantum circuit, the problem becomes
very naturally suited for a quantum computer. Furthermore, intuitively, the hardness of
classically reproducing the sampling results comes directly from the hardness of classically
simulating generic quantum circuits. In particular, if the quantum circuit to be run has little
structure (for example, if it consists of a series of random quantum gates), there should be
no “shortcuts” by which a classical computer can reproduce the results, short of accurately
simulating a quantum device.6 Starting in 2019, a series of experiments were published
implementing this idea at scale and marking the first quantum computations to not only
outperform the top classical supercomputers, but do so to such an extent that the results
could not be reproduced classically at all!7 [32]–[35]

With those results came a subtlety, however: if the output cannot be reproduced classi-
cally, how is it possible to verify that it’s actually correct? The papers followed two parallel
strategies for handling this. The first is to perform experiments in the so-called “Goldilocks
zone,” where finding a classical solution is very difficult but not impossible. That way, the
difference in computation time (or another metric such as energy usage) can still constitute
quantum advantage, yet via a large classical computation the results can be verified. The
second strategy applies to computational problems past the Goldilocks zone, where direct
verification is truly infeasible. In that case, experiments resorted to showing that quantum
mechanical processes were the only “reasonable” explanation for the observed results. For
example, in their landmark paper that began the series of experimental claims to quantum
advantage, Google showed that their device performed as expected for a set of “nearby” com-
putations that were possible to classically simulate, extrapolating that the device probably
would perform as desired when running the classically hardest computations as well. In a
similar vein, the second paper to claim quantum advantage supported their results by “ruling
out alternative [classical] hypotheses.” [33]

6While the intuition may be clear, a considerable effort was required to give theoretical backing to the
hardness of random circuit sampling, and the hardness of approximately sampling from the distribution is
still an active area of research. [24]–[31]

7A number of follow-up papers from other research groups demonstrated various improvements to classi-
cal techniques for more efficiently solving the sampling problems implemented in the experiments; [24]–[31]
in the mean time, the quantum experiments have also improved. At this point it seems to be generally
accepted that the most recent experiments are truly out of reach of classical computing.
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1.2.2 Efficiently-verifiable tests

But what if there is some classical explanation that we have not considered? Or, what
if we do not have any ability to look “inside” the device running our computations—for
example, if we want to test the power of a quantum cloud computing service being offered
over the internet? To demonstrate quantum advantage past the Goldilocks regime in these
scenarios requires setting up an asymmetry in the computational problem: it should be hard
to classically solve, but easy to classically verify. We can frame this idea via a structure from
classical complexity theory called an interactive proof. Here, a quantum prover desires to
demonstrate its capability to skeptical classical verifier. Due to this connection, this type of
test has been termed a “proof of quantumness.”

Shor’s algorithm actually provides a straightforward protocol for achieving these goals:
the classical verifier chooses two large prime numbers (in a way that would be secure for
RSA encryption), multiplies them together, and sends the result to the quantum prover. If
the prover can find the factors and return them, the verifier can be confident that the prover
is truly quantum, to the same level of confidence that it is believed that classically factoring
numbers is hard. We have already discussed why this protocol begs to be improved: the
inherent challenges in running Shor’s algorithm make it totally infeasible to run at scale on
today’s quantum devices. So, recent excitement has focused on whether the goal of creating
an efficiently-verifiable “proof of quantumness” can be achieved in a way that is compatible
with near-term devices.

There seem to be two direct paths towards achieving this. The first is to take a sam-
pling problem, like the ones that were first used to show (non-efficiently-verifiable) quantum
advantage, and somehow add structure to it so that the output can be efficiently verified.
The second is to take a cryptographic problem, like factoring, and somehow “strip it down”
to its core, such that it hopefully could require less resources than the full machinery of an
algorithm like Shor’s.

1.2.2.1 Adding structure to sampling problems

The challenge with the first approach is that the classical hardness of sampling problems at
some level depends on the fact that they do not have much structure. To my knowledge, there
has only been one protocol ever proposed that attempts to create a proof of quantumness
in this way. It actually came long before even the non-verifiable tests of quantum advan-
tage were proposed. In 2008, a paper was released introducing a new quantum complexity
class called IQP (“Instantaneous Quantum Polynomial” time, a class of quantum circuits in
which all gates commute with each other). The authors realized that the structure of IQP
computations seemed to lend itself to a particular sampling problem, which could be set
up such that the underlying measurement distribution frequently yielded bitstrings with a
special, efficiently-checkable relationship to a secret string s that should only be known to
the verifier. Since s is secret, and simulating IQP circuits is classically hard, [16], [36] only
a real quantum computer should be able to reliably produce bitstrings having this special
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relationship to s. The protocol remained known for over a decade, and experiments be-
gan to undertake efforts to implement it. [37] Unfortunately, it turned out that the concern
raised above, that adding structure might compromise the classical hardness, was real. In
2019 I found a classical algorithm by which the secret string s can be recovered in its en-
tirety, destroying the classical hardness claim of the protocol. The original protocol, and the
algorithm to break it, are described in Chapter 4.

1.2.2.2 Protocols based on cryptography

While that first approach does not seem to have led to any further advances, progress has been
made on the second—simplifying cryptographic problems to make them more feasible. This
may initially seem surprising, considering that “make factoring easier for near term devices”
is an obvious and intensely sought-after goal in quantum computing! The key observation
is that actually fully factoring numbers is overkill. All we need is to do something that
classical computers can’t, and perhaps that something can be based on the hardness of
factoring, without needing to return the factors themselves.

Intuition for how this might work can be found in the cryptographic concept of the zero-
knowledge proof, which allows a prover to demonstrate that they know a particular fact or
value to the verifier, without actually revealing any further information about it. As an
example, consider the following (classical) protocol by which a prover can demonstrate that
they know the discrete logarithm of a value without revealing it. [38] Suppose y, g, and p
are publicly known integers, such that y < p, p is a large prime, and g is a generator for
the multiplicative group of integers modulo p. The prover wants to demonstrate that they
secretly hold a value x such that gx mod p ≡ y. They first choose a random integer r such
that 0 ≤ r < p − 1, compute C = gr mod p, and send C to the verifier. The verifier now
randomly chooses to ask for either the value r or the value x+r. Upon receipt, either can be
easily checked: with knowledge of r, the verifier checks that C indeed is equal to gr mod p;
with x + r, the verifier checks that gr+x ≡ Cy (mod p). We observe two guarantees: first,
the verifier gets no extra information from their receipt of only r or x + r—in either case,
the information about x is perfectly statistically hidden by the randomness in r. Second,
if the prover can consistently answer correctly over many repetitions of the above protocol,
the verifier should be convinced that the prover knows both r and r+ x each time, and thus
x! Crucially, the prover did not know which question would be asked until after making
the commitment C. It’s also crucial that a new r is chosen for each repetition, otherwise
the verifier could easily extract x. This protocol is known specifically as a zero-knowledge
interactive proof, because of the requirement that several messages to be sent back and forth
between the prover and verifier. It has a structure shared by many zero knowledge interactive
proofs: first, the prover makes a commitment, and then the verifier makes a query chosen
at random from a set. Knowledge of the correct response to a single query is not sufficient
to recover anything about the hidden information, but knowledge of the correct responses
to all of the queries is sufficient to recover the hidden information in full. By repeating the
protocol many times, the verifier becomes confident that the prover knows the answer to all
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the queries simultaneously, and therefore knows the secret.
There is a really nice way that such a structure can be applied to the quantum setting. In

the commitment phase, the prover commits to the claim that they hold a particular quantum
state. Then, the verifier’s queries can correspond to different ways of measuring that quantum
state. Intuition from quantum state tomography tells us that if “correct”8 measurement
results can be produced for arbitrary measurement bases, the state can be reconstructed.
Thus by repeating the protocol many times to ensure the prover always responds correctly
regardless of the measurement basis, the verifier can ensure that the prover does indeed hold
(or at least have a description of) the state to which they commit. This intuition only goes so
far, however, because we desire that the protocols remain convincing even in the adversarial
setting, where the prover is not just noisy, but instead is actively trying to fool the verifier
by producing false measurement results. In this setting it is necessary to show more than
just that the prover’s data could reasonably have come from the committed quantum state.
We also must ensure that there are no shortcuts by which a classical cheater could produce
results that seem to follow the same distribution!

The first protocol with this structure was introduced to the literature in 2018, by Brak-
erski et al. [39] (although the general structure just described was not explicitly presented
by the authors in that work). The authors construct a protocol by which the prover can
use a cryptographic construction called a trapdoor claw-free function (TCF) to commit to
holding a superposition of the form |x0⟩+ |x1⟩, where x0 and x1 are n-bit (classical) strings.
They use a cryptographic problem called Learning with Errors (LWE) to construct a TCF
with the necessary properties. Importantly, the protocol is set up such that the specific
values x0 and x1 are computationally hard for a classical cheater to find (under the LWE
assumption). But, the classical verifier has access to some secret information, with which
the two values are easy to compute given the prover’s commitment. After the verifier has
received the prover’s commitment, they move onto the “query” phase, in which the verifier
asks the prover to make one of two simple measurements: either measure all of the qubits in
the computational (Z) basis, collapsing the superposition and yielding x0 or x1, or measure
them all in the Hadamard (X) basis, yielding a measurement result that depends on quan-
tum interference between x0 and x1. The authors show that a prover that is able to answer
both queries consistently would be able to use those answers to break the LWE assumption,
thereby bounding the probability by which a classical cheater could pass the protocol and
providing a proof of quantumness.

Unfortunately, setting the cryptographic parameters to values that make classical cheat-
ing hard causes the quantum circuits to be so large that its implementation is quite far out of
reach of near-term devices.9 For this reason, further studies explored whether cryptographic
problems other than LWE could be used in the same, or a similar, protocol. The main
challenge is that the protocol requires a very strong cryptographic assumption called the

8Following the probability distribution of the committed state.
9No extensive analysis of the quantum resources needed for this protocol seems to have been published

in the academic literature; however, a brief investigation done by myself together with Dr. Andru Gheorghiu
(Chalmers University of Technology, Sweden) convinced me that it will not be feasible for some time.
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adaptive hardcore bit assumption, which roughly states that given one of the two bitstrings
in the superposition (say, x0 above), it is computationally hard to find even a single bit of in-
formation about the second bitstring (x1). To my knowledge, it is not known how to build a
TCF with such a strong cryptographic guarantee from anything other than LWE.10 Instead,
studies have focused on modifying the protocol itself to relax the required cryptographic
assumptions of the TCF.

The first paper to do so constructed a related protocol in the random oracle model,
where both the prover and verifier have access to an oracle implementing a random func-
tion (the outputs of the function are perfectly random, but consistent when given the same
input). [41] Intuitively, the randomness is used to “scramble” the values x0 and x1 before
measurement, removing the extra structure a classical cheater could leverage (which created
the need for the adaptive hardcore bit requirement). The challenge of using this protocol
in practice, of course, is that random oracles do not exist in real life; they can be approxi-
mately implemented via the random oracle heuristic which replaces the random oracle with
a cryptographic hash function.11 Additionally, if the random oracle heuristic is applied, the
protocol requires that the cryptographic hash function be evaluated coherently on a super-
position of inputs, adding to the quantum circuit size. However, if one is willing to accept
that, this protocol yields multiple benefits. First of all, as alluded to earlier, it reduces the
cryptographic requirements of the TCF, removing the need for the adaptive hardcore bit
property. Taking advantage of this fact, the authors provide a new TCF construction based
on a computational problem called Ring-LWE, which is expected to be more efficient to
implement than regular LWE. Additionally, the inclusion of the random oracle allows the
protocol to use only a single round of messages between the prover and verifier—thus making
it non-interactive, which could be useful in certain practical scenarios.

In Chapter 5 of this dissertation, we construct a protocol which removes the need for
the adaptive hardcore bit property in the standard model of cryptography—that is, without
the need for random oracles. This both makes a stronger demonstration of a fundamental
difference in quantum versus classical computational power, and also removes the need for
evaluating a cryptographic hash function coherently in addition to the TCF. In that chapter
we also introduce two new TCF constructions, whose hardness are based on factoring and the
decisional Diffie-Hellman (DDH) problems, respectively. The factoring-based construction
requires the quantum prover to compute only f(x) = x2 mod N coherently, as opposed to
the f(x) = ax mod N required by Shor’s algorithm, leading to a dramatic reduction in the
cost of implementation—yet the hardness of classically cheating remains the same. With the
efficient circuit constructions that we describe in Chapter 7, we believe that this protocol is
the closest yet to being implemented on real quantum devices in the next few years. As a

10There is one other proposal, based on isogeny-based group actions, that is reasonably conjectured to
have the adaptive hardcore bit property. [40] In any case, that construction does not yield any benefits over
LWE in terms of practical efficiency.

11The validity of the random oracle heuristic is a subject which has been explored at length; [42], [43] the
broad consensus in the cryptographic community seems to be that despite the fact that it does not have any
theoretical backing, it is fine in practice.
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first step towards this goal, in Chapter 6 we present a first proof-of-concept experiment, in
which the protocol is implemented at a small size in a trapped ion quantum computer.

Before concluding this section, I would like to describe two more papers which have taken
new approaches to demonstrating quantum computational advantage. Neither seems to have
any hope of being implemented on near term devices, but both make new progress in showing
what types of cryptography can be used to build these protocols—and hopefully, they can
lead to new constructions that are indeed cheaper to implement. The first is a protocol
by Yamakawa and Zhandry, which operates in the random oracle model but requires no
TCF at all—the random oracle is the only cryptographic tool required! [44] It introduces
a clever construction called “quantum state multiplication”, in which two quantum states∑

x cx |x⟩ and
∑

y dy |y⟩ are combined into a single state
∑

x,y cxdy |x+ y⟩ (an operation that
is usually impossible, but is made possible by the specific setup in the protocol). The second
is a protocol by Kalai et al., which constructs a compiler that takes multi-party interactive
proofs (that is, those with multiple provers working together to try to convince the classical
verifier of a fact) and turns them into single-prover protocols. [45]

1.2.2.3 Moving past proofs of quantumness

While it seems to be an important milestone in the path towards full-scale quantum comput-
ing, demonstrating quantum computational advantage will not forever remain a particularly
useful task. Fortunately, the protocols discussed in the preceding section represent just
a subset of quantum interactive (or sometime non-interactive) protocols, which in general
can achieve much more than simply demonstrating quantum computational power. In fact,
the first protocol described above, based on the LWE problem, already pursued further ap-
plications. Not only was it presented as a test of quantumness, but it also represents a
way to use an untrusted quantum device to generate random numbers that are certifiably
quantum—that is, true randomness! In a pair of related papers, Mahadev showed that simi-
lar constructions could be used to implement classical homomorphic encryption for quantum
circuits [46] and even the classical verification of arbitrary quantum computations [47]. Later
papers also showed that this type of protocol could be used for other tasks, such as verifiable
remote state preparation. [48] Finally, it has also been shown (in a paper I co-authored with
several colleagues) that some of the quantum advantage protocols described in the previous
section can be used unchanged to prove certain facts about the inner workings of a quan-
tum device, leading to implications such as certifiable quantum random number generation
directly from those protocols. [49]
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Part I

Numerical studies of many-body
quantum systems
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In this first Part, we explore the following question: despite the seemingly fundamental fact
that generic many-body quantum mechanical systems are exponentially costly to classically
simulate, how far can we push it? While, as described in the Introduction (Chapter 1), clas-
sical simulation can actually be efficient for quantum systems with certain special properties
like low entanglement, here we focus on instances in which this is not the case, and the
best approach is truly to store and manipulate exponentially-large vectors of coefficients to
represent quantum states. We apply the tools of modern supercomputing, including massive
parallelism both via the distributed memory paradigm and also via acceleration on graphics
processing units (GPUs), as well as cutting-edge algorithms for numerical linear algebra, to
push our computations to as large system sizes as possible, enabling the numerical observa-
tion of new physics which was previously obscured by finite size effects.

In Chapter 2, we present the numerical package dynamite, which provides an easy-
to-use and straightforward Python interface to highly-optimized, massively parallelizable
numerics for many-body systems of quantum spin-1/2 particles with arbitrary interactions.
In Chapter 3, we present a new numerical approach to the specific problem of exploring
many-body localization in the Heisenberg model with disordered on-site fields. In particular,
we apply a cutting-edge numerical algorithm called LOBPCG in combination with other
algorithmic tricks and a hand-tuned software implementation to dramatically reduce the
computer memory required to solve the problem.
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Chapter 2

dynamite: massively parallel numerics for
many-body quantum spin systems

2.1 Introduction
The spin-1/2 particle is one of the simplest and most famous quantum systems, and its dy-
namics and behavior were established early in the study of theoretical quantum mechanics.
The Schrodinger equation for a single two-level system has a straightforward form, and in
many cases can be solved analytically without much difficulty. However, the study of col-
lections of such simple particles has proved much more difficult, and in many cases much
more interesting. Emergent properties including novel phases of matter, some of which only
arise in exotic circumstances such as out-of-equilibrium driven systems, have generated ex-
citement and driven an intense push towards the deeper understanding of these systems’
behavior. Throughout most of the 20th century, advances in their study came largely from
the development of increasingly clever analytic methods. But recently, concurrent, drastic
improvements in both high-performance computing power and experimental control of indi-
vidual quantum particles have enabled new forays into questions about many-body quantum
mechanics which had remained stubbornly resistant to analysis.

Even with the power of modern computers, the study of many-body quantum systems
remains challenging. For example, simply representing an arbitrary quantum operator with
support on L spin-1/2 particles into computer memory requires storing roughly 4L complex
numbers—a prospect which is infeasible even on a supercomputer, for L of just a couple
dozen. Despite this, great progress has been made through the design of numerical algorithms
which take advantage of the fact that the space of physically relevant quantum operators and
states is often much smaller than the space of all possible ones. A classic and widely-used
example of such a technique is the tensor network formalism, and more specifically matrix
product states, which can be used to efficiently store and manipulate quantum states of
low entanglement. A number of numerical libraries have been developed to perform tensor
network computations, and they have become crucial tools in the field of numerical many-
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from dynamite.operators import sigmax, sigmay, sigmaz

H = 0
for i, j in kagome_bonds: # definition of kagome_bonds not shown

# Heisenberg interaction between spins i and j
H += sum(0.25*s(i)*s(j) for s in [sigmax, sigmay, sigmaz])

ground_state_energy = H.eigsolve()

(a) Code snippet solving for the ground state energy of the Heisenberg model on the Kagome lattice.

(b) A Kagome lattice geometry, for 30
spins on a torus. Light gray bonds rep-
resent “wrap-around” bonds due to the
periodic boundary conditions.

N. spins Dim. of H Solve time

24 1,352,078 0:00:01.9
27 20,058,300 0:00:32.9
30 77,558,760 0:03:40.3

(c) Time to solve for the ground state, for various sys-
tem sizes, on one Nvidia A100 GPU. Conservation laws
were used to reduce the dimension of the Hilbert space,
and the solve was performed in “matrix-free” mode.1

Figure 2.1: An example application of dynamite: solving for the ground state of
the Heisenberg model on the Kagome lattice. A full script for this example, including
code to compute the lattice bonds, is distributed with the dynamite source code, in the
examples/scripts/kagome/ directory.

body physics [50], [51]. However, quantum systems with large amounts of entanglement
are not treatable with matrix product states—a set that includes some of the most exciting
and mysterious phenomena, such as the many-body localization phase transition and the
dynamics of quantum information scrambling. The numerical study of these systems requires
storing the entire wavefunction explicitly; as a result, interrogating the phenomena that
emerge only when L is large requires leveraging all of the tools of modern supercomputing,
both in algorithms and hardware.

In this chapter, we present dynamite, a library for the numerical study of systems of spin-
1/2 particles. Its main functions are to compute the time evolution of pure states in closed
quantum systems, and to compute the eigenvalues and eigenvectors of quantum operators.

1In all cases, Hilbert space size is reduced by working in the half-filling subspace (this model conserves
total magnetization). For N = 24 and N = 27, Hilbert space is reduced by another factor of 2 by applying
a Z2 (spin-flip) symmetry. dynamite was built with real number scalars for these timing results.
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This is achieved via Krylov subspace algorithms, in which a low-dimensional subspace that
is continually updated throughout the computation until covergence is achieved—without
relying on particular features of the wavefunction like low entanglement. Built on top of
the PETSc and SLEPc sparse linear algebra libraries, dynamite is designed from the ground
up to leverage the massive parallelism available in modern high-performance computing
environments, with the ability to harness large numbers of CPUs distributed across many
compute nodes via MPI, and to perform highly optimized computations on the thousands
of cores of datacenter GPUs via CUDA. Previously, many-body physics studies looking to
achieve parallelism at this scale required custom implementations in low-level languages like
C, with much optimization required to achieve good performance. dynamite abstracts away
this optimization from the user, offering a clean, intuitive Python interface in which quantum
operators and states can be built symbolically (Figure 2.1a). This symbolic representation is
then passed to a highly optimized backend, where features like GPU acceleration and memory
saving “matrix-free” methods (see Section 2.4) can be enabled with the push of a button,
enabling computations that are simultaneously very fast and memory-efficient (Figure 2.1c).
At the same time, dynamite is portable, running equally as well in a Jupyter notebook on
a laptop as it does in a massively distributed compute job on a cluster. This, along with
its simple interface, makes it also useful as a tool for quick exploratory computations in the
lab. Both operators and states can easily be exported from their symbolic representation to
numpy format as well, allowing easy interface with existing code bases.

This chapter is organized as follows. In Section 2.2, we summarize the core functionality
of dynamite, and also note how it is distinguished from several other software packages. In
Section 2.3, we walk through several examples of studies that can be performed by dynamite,
presenting along the way some novel physics results that dynamite was used to discover. In
Section 2.4, we describe the algorithms and computational techniques underlying dynamite.
In Section 2.5 we provide performance results for its solvers, measuring both elapsed time
and memory usage in a number of different computational scenarios. Finally, in Section 2.6
we conclude with some discussion and outlook for the future.

2.2 Core functionality
dynamite offers the following core features:

• Symbolic operators on arbitrary geometries Symbolically build operators on
collections of spin-1/2 particles with arbitrary connectivity, by summing n-body prod-
ucts of single-site Pauli operators. When computations are performed, dynamite au-
tomatically converts this symbolic representation in Python into the numerical one
appropriate for the selected backend.

• Time evolution Given a time-independent HamiltonianH, time t and a pure state |ψ0⟩,
compute |ψt⟩ = exp(−iHt) |ψ0⟩. Or, compute the imaginary time evolution |ψτ ⟩ =
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exp(−Hτ) |ψ0⟩. Piecewise-constant time-dependent Hamiltonians (such as Floquet
systems) can also be used.

• Eigensolving Compute an operator’s k lowest eigenvalues and their associated eigen-
states, for user-configurable k. Or, additionally given a target energy τ , compute the
k eigenvalues closest to τ and their associated states.

• Entropy Tracing out arbitrary sets of spins from Efficiently compute reduced density
matrices from pure states, and the associated von Neumann or Renyi entropies.

• Symmetry subspaces Reduce computation time and memory usage by specifying
subspaces corresponding to symmetries conserved by the Hamiltonian. dynamite has
optimized implementations of U(1) (conservation of total spin) and Z2 (spin flip) sym-
metries. It also allows users to define their own subspaces consisting of arbitrary sets of
product states (for example, the allowed states in a system with Rydberg blockades).

• Matrix-free methods Drastically reduce memory usage by running computations
“matrix free,” where matrix elements are computed on the fly from the symbolic rep-
resentation rather than being stored in memory. See Section 2.4.2 for details.

• Extensive documentation, tutorials, and examples Full documentation of all
of dynamite’s functionality can be found at https://dynamite.readthedocs.io/.
That site also includes instructions for installing the package and running the tutorial
Jupyter notebooks, as well as a link to a large set of example scripts.

Some related software packages, whose functionality intersects with dynamite’s in var-
ious ways, include: QuSpin [52], a python package for exact diagonalization and dynamics
that uses OpenMP parallelization; SPINPACK, a C package for finding lowest-energy eigen-
states that uses MPI (or hybrid MPI-Pthreads) parallelization [53]; and SpinED, a static
executable for calculating lowest-energy eigenstates (single node support) [54]. To our knowl-
edge dynamite is the first numerical package that allows users to symbolically build quantum
operators as Python objects, and then run computations on them in a massively parallel,
distributed memory or GPU accelerated setting, including features such as matrix-free com-
putation.

2.3 Examples
In this section we present a series of examples representing a range of interesting physics
problems that can be studied with dynamite. Each of the following examples has a corre-
sponding entry in the examples/scripts directory of the dynamite source tree, where users
can find the full example source code and accompanying documentation. Those full exam-
ples also include various extra performance optimizations and other tricks, so the authors
recommend that readers interested in reproducing or modifying these examples use those

https://dynamite.readthedocs.io/
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scripts as a starting point. Two of the examples also correspond to new scientific insight
that was gained through studies using dynamite; we discuss the results where applicable.

2.3.1 Floquet prethermalization

Closed quantum systems subjected to a drive tend to heat up to infinite temperature, because
the drive inputs energy to the system but no energy is ever dissipated. At first sight,
this means that most driven closed quantum systems are not particularly interesting—the
infinite temperature state corresponds with a density matrix that is the identity, and is thus
featureless. One way of avoiding this infinite-temperature fate is by setting up the system to
exhibit many-body localization (MBL), which prevents the system from thermalizing, even
at infinite time (MBL is explored further in Section 2.3.2). However, another way to observe
interesting physics is to look at the system’s behavior pre-thermal regime: the period of time
before it has had the chance to fully heat up. Amazingly, analytic studies have shown that in
certain Floquet systems—those in which the drive is periodic—this pre-thermal regime can
exist for a time scale at least exponentially long in the frequency of the drive. [55]–[59] The
hope is that such a long prethermal regime provides a sufficient window of time to observe
interesting phenomena. Here, we numerically study the time evolution of a set of related
Hamiltonians, and observe that long-range order induced by an effective Hamiltonian in the
prethermal regime can lead to a novel out-of-equilibrium phase of matter called a discrete
time crystal—in which a discrete time translation symmetry is spontaneously broken.

We begin by considering a 1D spin chain with open boundary conditions, with a long-
or short-range ZZ interaction (either decaying as a power law, or nearest-neighbor). In
addition we apply a nearest-neighbor XX interaction and a uniform, static magnetic field
h⃗. This interaction has the form:

H = Jz
∑
i<j

σz
i σ

z
j

|i− j|α + Jx
∑
⟨i,j⟩

σx
i σ

x
j +

∑
i

h⃗ · σ⃗ (2.1)

where the angle brackets on the second term indicates it is only a nearest-neighbor interac-
tion. We may consider the nearest-neighbor interaction to correspond to the case of α =∞.
In dynamite, this Hamiltonian itself can be implemented in just a few lines of code, as shown
in Code Listing 2.1.

For the Floquet drive, after every period T of time evolution the system will undergo a
global π-pulse which we denote as X, rotating all spins by 180◦ around the x-axis. (Note
that this is equivalent to flipping the direction of the magnetic field h⃗ across the x axis every
time T ).

There are a few quantities we would like to track during the evolution of this system.
First, we’d like to measure the energy of the effective HamiltonianD∗ under which the system
evolves (in a frame that flips along with the π-pulses X). The exact form of D∗ cannot be
expressed concisely, but we can approximate it as the Hamiltonian of Eq. 2.1 averaged over
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def build_hamiltonian(alpha, Jz, Jx, h):
# sums over all ranges of interaction
# index_sum takes the interaction sigmaz(0)*sigmaz(r) and
# translates it along the spin chain
long_range_ZZ = op_sum(

1/r**alpha * index_sum(0.25*sigmaz(0)*sigmaz(r))
for r in range(1, config.L)

)

# an XX interaction on every neighboring pair of sites
# the 0.25 is because spin operators are 1/2 times the Pauli
nearest_neighbor_XX = index_sum(0.25*sigmax(0)*sigmax(1))

# op_sum combines the three components of the magnetic field vector;
# index_sum translates it to every site along the spin chain
magnetic_field = index_sum(

op_sum(hi*0.5*s() for hi, s in zip(h, [sigmax, sigmay, sigmaz]))
)

return Jz*long_range_ZZ + Jx*nearest_neighbor_XX + magnetic_field

Code Listing 2.1: Implementation of the long-range Hamiltonian in Eq. 2.1.

a full cycle of length 2T , which we denote as D:

D =
1

2

(
H +X†HX

)
(2.2)

In addition to the expectation value ofD, we compute the magnetization of each spin in the Z
direction as the expectation values of Sz

i for all i, as well as the entanglement entropy. With
that, we can implement the Floquet evolution of our system, as shown in Code Listing 2.2.
Note how D and the global pi-pulse are extremely easy to implement in dynamite via its
support for arbitrary operator arithmetic. Furthermore, both operators are very fast to
compute because the arithmetic is implemented symbolically via Pauli operations, rather
than matrix-matrix products.

Using dynamite to evolve this system yields the results plotted in Figure 2.2. Here, we
have used a system size of L = 22 spins, with the parameters α ∈ {1.13,∞} (for long- and
short-range interactions respectively), Jz = 1, Jx = 0.75, and h⃗ = (0.21, 0.17, 0.13).2 The
frequency ω is the inverse of the time T that is allowed to elapse before the spin flip operator
X is applied. In all cases the evolution starts from a product state; the precise product

2For the time evolution in the figure we have built the Hamiltonian with closed rather than open
boundary conditions, for which we define the long range-interaction strength by replacing |i − j|−α with
[(L/π) sin |i− j|π/L]−α, which matches the periodicity of the boundary conditions.
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# the Hamiltonian; see previous code listing
H = build_hamiltonian(args.alpha, 1, args.Jx, args.h_vec)

# pi pulse operator
X = index_product(sigmax())

# the averaged "effective" Hamiltonian
D = (H + X*H*X)/2

# we create Deff and the Sz operators before the iterations start,
# in order to cache their matrix form
Sz_ops = [0.5*sigmaz(i) for i in range(args.L)]

# a workspace vector to store the output of the evolution in
tmp = state.copy()

for cycle in range(args.n_cycles):
H.evolve(state, result=tmp, t=args.T) # evolve under H for a time T
X.dot(tmp, result=state) # apply the pi pulse

# "state" now contains the state vector at this time step
# now compute some stats...

half_chain_entropy = entanglement_entropy(state, range(args.L//2))

D_val = D.expectation(state)

Sz_vals = []
for i in range(args.L):

Sz_vals.append(Sz_ops[i].expectation(state))

# now perhaps print the results, or save them to a file, or...

Code Listing 2.2: Time evolution under the Floquet Hamiltonian.
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Figure 2.2: Time evolution in a Floquet driven system, exhibiting prethermal
discrete time crystalline behavior. [60] The behavior in the limit ω → ∞ is computed
by evolving directly under D, which is equal to D∗ in this limit. (a-c) Expectation value
of the energy with respect to D, the approximate effective Hamiltonian in the prethermal
regime. The energy is approximately conserved during the prethermal regime, until the
system heats to infinite temperature at a time scale exponentially long in ω. (d-f) Half-chain
entanglement entropy. We observe that by the time τpre, the system thermalizes with respect
to the effective pre-thermal Hamilonian, at which time the entropy hits a plateau; only when
the system leaves the prethermal regime does the entropy approach its infinite temperature
value. (g-i) Total magnetization. Period-doubling behavior, corresponding to spontaneous
breaking of the discrete time-translation symmetry, is observed; it is stable only in the cold
long-range case where D∗ supports ferromagnetic order.

state is labeled in Figure 2.2 and is varied in the long-range case to explore both low-energy
(“cold”) and high-energy (“hot”) initial states.

Begin by observing the top row of plots of Figure 2.2, which show the expectation value of
the approximate effective HamiltonianD throughout the time evolution. In every case (short-
range interactions, and both temperatures of long-range interactions) we observe a clear
signature of a pre-thermal regime corresponding to the effective Hamiltonian approximated
by D. The expectation value of D is conserved for the period in which the system’s evolution
is well-approximated by it, and only after a sufficiently long time does the system begin to
heat up and eventually reach a thermal state in which ⟨D⟩ = 0. As expected, we observe
that the length of the prethermal regime depends exponentially on the frequency ω. The
same pattern is shown in the entanglement entropy, in the middle row of plots, with the
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addition of the fact that we see the initial effective thermalization of the product state to the
thermal state with respect to D! In particular, the initial product state has no entanglement,
and after a time τpre (which does not depend on ω) the system reaches an entanglement
entropy corresponding to a thermal state of the same temperature as the initial state (with
respect to D). This is made particularly clear by comparing to the black dotted line, which
plots the limit of ω = ∞ (implemented by just evolving under D directly, which is exactly
equal to D∗ in this limit). The “kink” corresponding to where the system has thermalized
with respect to D but has not yet left the prethermal regime is called the “prethermal
plateau.” Finally, in the bottom row of plots, we observe the time-crystalline behavior
that was alluded to at the beginning of this section, in the form of period-doubling : the
magnetization only returns to its original value every other period of the drive, corresponding
to a spontaneously broken time translation symmetry. Note in particular that in the short-
range and hot long-range cases, this time crystalline phase is not stable: it disappears by
the time τpre is reached, because in these cases the effective Hamiltonian D∗ is not capable
of supporting long-range magnetic order (the time crystal “melts”). On the other hand,
in the cold long-range case, D∗ supports stable long-range ferromagnetic order, and the
time crystalline behavior survives all the way until the system leaves the prethermal regime
and begins to thermalize to its final infinite temperature state—a length of time that is
exponentially dependent on the frequency. For more details and corresponding analytic
analysis, see the published manuscripts corresponding to this study. [60], [61]

2.3.2 Many-body localization in the Heisenberg random field
model

One of the main motivations for pushing numerics to the largest possible system sizes is to
study emergent phenomena which simply cannot exist in just a few spins. A prototypical
example is many-body localization (MBL): a surprising phenomenon in which certain many-
body systems with sufficiently strong disorder fail to thermalize. In particular we will study
the MBL transition, in which the system moves from thermalizing to localized as the dis-
order strength is increased. Characterization of this transition has remained elusive: finite
size effects seem hard to avoid, and tensor network methods break down due to extensive
entanglement in states near the transition. Thus, iterative methods like the Krylov subspace
methods used by dynamite have proved to be one of the best tools for its study. [62], [63] We
refer readers interested in learning more about the physics of MBL to one of the excellent
review papers on the subject. [64]

Here, we show how to implement a model of nearest-neighbor Heisenberg interactions on
a 1D chain with open boundary conditions, with disorder implemented as random Z fields
on each site:

H =
∑
⟨i,j⟩

S⃗i · S⃗j +
∑
i

hiS
z
i (2.3)

where S⃗ = (Sx, Sy, Sz), the subscripts indicate the index of the spin in the chain, and the
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angle brackets indicate that the indices run over nearest neighbors. The values of hi are
drawn from a uniform distribution [−h, h] where h is a parameter that controls the strength
of the disorder. The implementation in dynamite is presented in Code Listing 2.3. This
Hamiltonian conserves total magnetization

∑
Sz, which we use to reduce the size of the

Hilbert space for our computations.

from dynamite.operators import sigmax, sigmay, sigmaz, op_sum, index_sum
from numpy import random

def build_hamiltonian(L, h):
# Heisenberg interaction on all nearest neighbors
H = index_sum(

op_sum(0.25*s(0)*s(1) for s in [sigmax, sigmay, sigmaz]),
size=L

)

# random fields
H += op_sum(

random.uniform(-h, h)*0.5*sigmaz(i)
for i in range(L)

)

Code Listing 2.3: Implementation of the nearest-neighbor Heisenberg model, plus
on-site random fields.

In this example we identify the MBL transition via the half-chain entanglement entropy
of eigenstates, SL/2, which is simply the bipartite von Neumann entropy when half the spins
are traced out. The MBL transition should correspond to a transition from volume law
to area law entanglement. In the full example included with the dynamite source, we also
examine an eigenvalue statistic called the “adjacent gap ratio.”

The key feature that makes MBL so interesting is that the transition from volume to
area law entanglement does not only occur in the ground state, but in excited states as well.
This presents a great use case for dynamite’s “target” eigenvalue solver, which finds the k
eigenvalues (and eigenvectors) closest to a target energy, where k is user configurable. Code
Listing 2.4 implements the following computation: 1) choose an energy in the middle of the
spectrum, 2) solve for 32 eigenpairs near this point, and then 3) compute the entanglement
entropy for all of those eigenpairs.

An extensive numerical study of the MBL problem is presented in Chapter 3.

2.3.3 Many-body chaos in the Sachdev-Ye-Kitaev model

In spirit the Sachdev-Ye-Kitaev (SYK) model represents the opposite of the localization in
the previous example: it is expected to scramble information highly efficiently via chaotic
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from dynamite.subspaces import SpinConserve
from dynamite.computations import entanglement_entropy

# ...
# not shown: set L and h
# ...

H = build_hamiltonian(L, h)
H.subspace = SpinConserve(L, L//2)

# compute 32 eigenpairs near energy 0.1,
# which is in the middle of the spectrum
evals, evecs = H.eigsolve(target=0.1, nev=32, get_vecs=True)

# compute the half-chain entanglement entropy of each
entropies = []
for evec in evecs:

entropies.append(
entanglement_entropy(evec, range(L//2))

)

Code Listing 2.4: Implementation of the Heisenberg + random field model.
build_hamiltonian is implemented in Code Listing 2.3.

many-body dynamics. [65], [66] Indeed, it exhibits maximal chaos : the Lyapunov exponent,
which characterizes the rate of chaos, saturates its upper bound of 2πT , where T is the
temperature of the system. [67] Its physics can be connected to the dynamics of quantum
information in black holes, providing a testbed for exotic phenomena such as scrambling-
based teleportation. [68]–[71]

The SYK model gives us a chance to look at how quantum systems other than spins can
be explored with dynamite, by transforming them onto a spin system. The SYK model we’ll
use consists of Majoranas interacting in 0D, with random couplings. Specifically it consists
of every possible 4-body interaction among N Majoranas, with each term having a random
coupling strength:

H =

√
6

N3

∑
ijkl

Jijklχiχjχkχl (2.4)

where Jijkl are randomly chosen from a Gaussian distribution with variance 1.
To map the Majoranas onto the spin systems that are natively supported in dynamite,

we can use the following transformation. For the Majorana with index i, let q = ⌊i/2⌋. Then

χi = σ{x,y}
q

∏
m∈[0,q−1]

σz
m (2.5)



CHAPTER 2. DYNAMITE: MASSIVELY PARALLEL NUMERICS FOR MANY-BODY
QUANTUM SPIN SYSTEMS 34

where the first Pauli is σx if i is even and σy if it’s odd. In words, the Majorana consists of
a σx or σy with a string of σz extending to the edge of the spin chain. Note that we get two
Majoranas for each spin! This is straightforward to implement in dynamite, but is actually
already built in in the dynamite.extras module so we don’t have to do it ourselves. Using
that, an implementation of this Hamiltonian is shown in Code Listing 2.5. Note that this
Hamiltonian has enough terms that building it can take an appreciable amount of time; a
more efficient but less transparent version of the build_hamiltonian function can be found
in the full SYK example, distributed with the source code of dynamite. The full example
also takes advantage of a Z2 symmetry in the Hamiltonian to speed up the computations.

from dynamite.extras import majorana
import numpy as np

def build_hamiltonian(N):
# N is the number of Majoranas

H = 0
for i in range(N):

for j in range(i+1, N):
for k in range(j+1, N):

for l in range(k+1, N):
Jijkl = np.random.normal()
H += Jijkl*majorana(i)*majorana(j)*majorana(k)*majorana(l)

return np.sqrt(6/N**3) * H

Code Listing 2.5: Implementation of the SYK Hamiltonian (Eq. 2.4).

We can study the fast scrambling behavior of the SYK model by examining out of time
order correlators (OTOCs). In particular, we will measure to what extent two local operators
V (0) and W (t) anticommute for various times t, where the anticommutator at time t = 0 is
zero:

C(t) = ⟨|{W (t), V (0)}|2⟩. (2.6)

It is helpful to reduce this to the following equivalent expression

C(t) = 2Re [⟨W (t)V (0)W (t)V (0)⟩] + 1/2 (2.7)

which is the formulation of C(t) that we will use here.
Defining O(t) = W (t)V (0)W (t)V (0), we are specifically interested in this operator’s

expectation value with respect to thermal states, of various (inverse) temperatures β. Now,
dynamite’s speed comes from the fact that it works with pure states, rather than mixed
states—so the obvious plan to just compute Tr

[
O(t)e−βH

]
is out of the question. Instead,
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we can take advantage of an idea called “quantum typicality” to get an estimate of the
expectation value more efficiently. [72], [73] Quantum typicality says that Tr

[
O(t)e−βH

]
is

well approximated by the expectation value of e−βH/2O(t)e−βH/2 with respect to random
states (where we have split the thermal operator in half across the trace to get a more
symmetric result). For simplicity we can set W = χ0 and V = χ1. With that, for a
uniformly random state |ψr⟩ we will compute (writing things out in full):

⟨ψr| e−βH/2eiHtχ0e
−iHtχ1e

iHtχ0e
−iHtχ1e

−βH/2 |ψr⟩ (2.8)

In Code Listing 2.6 we demonstrate how the expectation value of this operator can be
computed in dynamite.

In Figure 2.3, we compute F (t) which is closely related to C(t): it is the “regularized”
OTOC in which the thermal density matrix is spread equally across the operator, see the
supplementary information of the published manuscript for details [74]. Note that there are a
lot of independent parameters: the time t, temperature β, and system sizeN can all be varied,
and to achieve good statistical significance requires then averaging over both the disorder in
H and the random states used in the quantum typicality computation. Figure 2.3(a) shows
the dependence of F (t) on t for various system sizes, at βJ = 10. (The plotted value is
F̃ (t) = F (t)/F (0)). There are two main observations to be made from this figure. First, the
scrambling behavior is clear: F (t) decays toward zero with a certain time scale, determined
at early times by the Lyanpunov exponent λ as 1 − F̃ (t) ∼ eλt/N . Second, there is clear
flow of λ with system size. A finite-size rescaling procedure can be used to extrapolate
λ to the limit of infinite system size, at which point it can be plotted as a function of the
temperature βJ (Figure 2.3(b)). The observed dependence of λ tracks closely with the result
of a semiclassical solution (the Schwinger-Dyson equations, labeled “SD” in the figure), and
at large β (low temperature), the theoretically predicted fast-scrambling limit of λ ≤ 2π/β.
For more details, including of the finite-size rescaling procedure and the prediction from
Schwinger-Dyson equations, see the published manuscript presenting these results. [74]

The results summarized in Figure 2.3 and elucidated in [74] provided the first numerical
evidence supporting the claim that the SYK model exhibits fast scrambling behavior at low
temperature. Previous efforts at smaller system sizes were unable to observe this behavior
due to finite size effects; this study was made possible by dynamite’s speed at very large
system sizes which enabled analysis of Hamiltonians on up to 60 Majoranas. Due to the
four-body all-to-all connectivity of the model (Eq. 2.4), the Hamiltonian has an extremely
large number of terms in the SYK Hamiltonian (487,635 for a system size of 60 Majoranas!),
explicitly storing the (sparse!) matrix in memory is infeasible for large problems: for 60
Majoranas it would require over 350 terabytes of RAM! Thus dynamite’s matrix-free (“shell”)
mode, which only stores and manipulates the operator symbolically, was crucial for this study.

After these results were published, two studies followed in which I was not directly in-
volved, but warrant mention for the curious reader. The many-body teleportation of quan-
tum states via scrambling, a phenomenon that emphasizes the duality between quantum
mechanical models like SYK and the dynamics of gravity models, in particular black holes
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from dynamite import config
from dynamite.extras import majorana
import numpy as np

# ... define number of majoranas N, temperature beta, time t, etc ...

# number of spins is half the number of majoranas that live on them
# this configures the number of spins globally
config.L = (N+1)//2

W = majorana(0)
V = majorana(1)

H = build_hamiltonian(N)

# imaginary time evolution for e^-beta*H/2
ket = H.evolve(State(state='random'), t=-1j*beta/2)
bra = ket.copy()

# need a temporary "workspace" vector as well
tmp = ket.copy()

for _ in range(2): # need to apply this twice
# V(0)
V.dot(tmp, result=ket)

# W(t)
H.evolve(ket, t=t, result=tmp)
W.dot(tmp, result=ket)
H.evolve(ket, t=-t, result=tmp)

# finally take the inner product and get the result!
otoc_val = bra.dot(ket)
C_t = 2*otoc_val.real + 1/2

Code Listing 2.6: Computation of the expectation value of the out-of-time-order
correlator with respect to a thermal state, via quantum typicality. Here we work
through Eq. 2.8 from right to left, applying time evolution and operators as we go. Since the
thermal imaginary time evolution is symmetric on both sides of the Equation, we “re-use” it
rather than computing it twice.
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(b)(a)

Figure 2.3: Fast scrambling in the SYK model. [74] (a) The value of the regularized
and normalized OTOC F̃ (t) = F (t)/F (0) (essentially equivalent to C(t)) as a function of
time t, for varying system sizes N . Clear scrambling behavior is observed in the exponential
growth of 1− F̃ (t) at short times, from which a Lyapunov exponent λ can be extracted. (b)
The result of extrapolating λ to infinite system size, for various values of the temperature
β. The results agree with the semiclassical prediction from the Schwinger-Dyson equations,
and at low temperature saturate the fast scrambling limit of λ ≤ 2π/β.

and wormholes, was numerically observed with dynamite. [71] In another study, dynamite
was used to show that sparse SYK, in which many of the Jijkl are zero, can reproduce many
of the features of the regular SYK model, but with a much lower computational cost to the
simulation. [75]

2.4 Methods
In this section, we give an overview of the numerical techniques used by dynamite, includ-
ing their strengths and limitations. First we describe at a high level the intuition behind
Krylov subspace algorithms. Next we describe the symbolic representation of operators used
internally by dynamite, and how it is used to implement the “matrix-free” multiplication of
states by operators. Finally we describe techniques used for parallelization, with a focus on
the matrix-free operations.

2.4.1 Krylov subspace algorithms

The two main computationally intensive tasks that dynamite performs are time evolution
and eigensolving. At first glance, for an operator H, the computational task of quantum
time evolution is to compute the unitary U = exp(−iHt), and for eigensolving it is to
compute a matrix A and diagonal matrix Λ such that AH = ΛH. Both U and (A,Λ) can
be computed in a straightforward manner using standard linear algebra subroutines (for
example, SciPy’s linalg.expm and linalg.eigh routines); however, as we explain below,
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doing so is exponentially more expensive than is necessary for most physics studies. For an
quantum operator on a Hilbert space of dimension N , matrices U and A both of dimension
N ×N , consisting of 4L complex numbers for a generic system of L spins-1/2 particles. The
power of the Krylov subspace algorithms underlying dynamite stems from the fact that they
avoid ever explicitly computing U or A, only requiring O(2L · poly(L)) memory to operate
and having a corresponding improvement in runtime. Here we give a brief overview of how
they work; for details please see the SLEPc Users Manual and Technical Reports. [76], [77]
Note that if the dynamite user wants to tune the solver by passing any of the “command line”
options to SLEPc as described in those documents, it can be achieved via the slepc_args
argument to dynamite.config.initialize().

An initial concern seems to be that the matrix H itself is of dimension N × N , which
ostensibly is an obstacle to achieving the efficiency just promised. However, H has a crucial
feature that U and A do not: it is sparse. This means that most of the matrix elements are
zero, and the cost of storing and working with the matrix can be reduced dramatically by
only storing the non-zero elements. In fact, the memory usage can be reduced even further
by not storing any of the matrix elements at all, as we discuss below in Section 2.4.2. With
that, we move on to discussing how we can use this sparse H to achieve performant time
evolution and eigensolving.

For time evolution, the key is that we are often more interested in the action of the matrix
U on a state vector than we are in the matrix itself. For an initial state |ψ0⟩, we desire to
directly compute the time evolved vector |ψt⟩ = exp(−iHt) |ψ0⟩ without needing to compute
the unitary as an intermediate step. The Taylor expansion of the matrix exponential suggests
that for reasonably small ||Ht||, |ψt⟩ will be dominated by a linear combination of the vectors
H i |ψ0⟩ for i ∈ [0,m], wherem is a small integer, say 30. These vectors are easy to compute by
repeatedly multiplication with H. This intuition forms the core idea behind Krylov subspace
methods: construct the subspace Km = span ({|ψ0⟩ , H |ψ0⟩ , H2 |ψ0⟩ , · · · , Hm−1 |ψ0⟩}), and
solve the linear algebra problem on this much smaller subspace. For time evolution, this
means projecting H onto Kn to yield a matrix H̃ of dimension only m×m, computing the
matrix exponential Ũ = exp(−iH̃t) (a trivial computation for a small matrix like H̃), and
then computing |ψt⟩ ≈ Ũ |ψ0⟩. Projected back into the full Hilbert space, for small ||Ht||, Ũ
should be a good approximation of U , and thus the result should be a good approximation
of |ψt⟩.

The case in which ||Ht|| is not sufficiently small presents the opportunity to discuss
another powerful technique crucial to these algorithms, which is called restarting. Instead
of computing a single Krylov subspace and attempting to perform the whole computation
in it, the subspace is iteratively updated throughout the computation until convergence is
achieved. The default restarting scheme for time evolution in dynamite is quite simple: the
desired evolution of time t is broken down into a series of shorter evolutions of time ∆t, which
is sufficiently small that Ũ is a good approximation of U . After each evolution of ∆t, the
Krylov subspace is constructed anew, such that it tracks the evolution of the state vector
through the Hilbert space. This is the algorithm used by the Expokit package, which
is reproduced in SLEPc; [76], [78] there is also a Krylov-Schur solver with a less intuitive
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restarting scheme available in SLEPc but we find it to be less stable.
For eigensolving, we take advantage of the fact that computing the matrix A of all

eigenvectors, which is enormous, may be overkill. Physics studies are often interested in
only a few particular eigenstates, such as the ground state and first few excited states.
Matrix-vector products are again useful here, with the simplest algorithm being the so-called
“power method.” Consider the decomposition of a random vector in the basis of (unknown)
eigenstates of H: it will have the form |ψr⟩ =

∑
i ci |ϕi⟩, where each |ϕi⟩ is an eigenstate.

When H is multiplied by this vector several times, the result is Hm |ψr⟩ =
∑

i ciλ
m
i |ϕi⟩—the

eigenvectors with eigenvalues of largest absolute value have been enhanced exponentially; for
sufficiently large m the result will converge to the most extremal eigenvector. Once again,
this process can be enhanced through the use of a Krylov subspace: instead of discarding the
vectors |ψr⟩ through Hm−1 |ψr⟩, they are used to construct a Krylov subspace. The matrix
H is projected into this subspace and the full spectrum is computed of the much smaller H̃.
As in the case of time evolution, a single iteration of this algorithm is unlikely to converge
within a reasonable error tolerance, again calling for a restarting scheme. A great deal of
effort has gone into designing optimal restarting schemes for Krylov eigensolving; they are
out of the scope of this work but we refer interested readers to the SLEPc technical papers
for a discussion of the solvers underlying dynamite [77].

Perhaps surprisingly, since it solves for extremal eigenvalues, this technique can also
be used to compute sets of neighboring excited states anywhere in the spectrum. This is
achieved via a spectral transform: rather than performing the solve on the matrix H itself,
it is performed on a function of H which moves the desired eigenvalues to the outside of the
spectrum. In dynamite, the default spectral transform for finding interior eigenpairs is shift-
and-invert, which, for a target energy σ, performs the transformation H → (H − σ)−1 such
that the eigenvalues closest to σ lie on the outside of the transformed matrix. This technique
has been used with great success in the study of many-body localization in particular, as
discussed in Sec. 2.3.2.

Finally, we note an important feature of all of these techniques: they almost exclusively
rely on the matrix-vector product as the definition of the matrix, rather than ever needing
to access individual matrix elements themselves. This fact is crucial for the ability to use
“matrix-free” implementations with these algorithms, as discussing in Sec. 2.4.2 below.

2.4.1.1 Error

Despite being frequently termed “exact diagonalization,” Krylov subspace algorithms are
approximate. In dynamite, the error is managed entirely by the SLEPc library that imple-
ments the solvers; SLEPc applies techniques such as the “restarting” just described in order
to converge results to within a requested tolerance ϵ (which can be passed as an argument in
dynamite). In this section, we make precise what dynamite’s error tolerance means, largely
by describing the definitions of error used by SLEPc.

For eigensolving, there is a straightforward way to compute the error. Suppose, for a
matrix H, that λ̃ and x̃ are an approximate eigenvalue and eigenvector, respectively. Ideally,
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we would have Ax̃ = λ̃x̃ exactly. To capture the essence of this goal, the residual vector is
defined as

r = Ax̃− λ̃x̃ (2.9)

and we may define the error in terms of this residual vector. For the solver settings used by
dynamite, convergence to a tolerance ϵ is achieved when at least the requested number of
eigenpairs have

||r||2/|λ| < ϵ (2.10)

This can be shown to correspond with the following two error bounds on λ̃ and x̃:

|λ− λ̃| ≤ ϵ|λ̃| (2.11) sin θ(x, x̃) ≤ ||r||2
δ

(2.12)

where θ(x, x̃) is the angle between the exact and approximate vectors and δ is the dis-
tance from λ̃ and its closest neighboring eigenvalue. Note in particular that the second
expression implies that nearly-degenerate eigenvalues can lead to considerable mixing of the
corresponding eigenvectors. Also note that when a spectral transform is used (the target
mode of eigensolving) the convergence criterion is evaluated for the transformed eigenprob-
lem. Finally, we observe that the Krylov-Schur method, used by SLEPc for eigensolving, is
known to sometimes “miss” degenerate (or very near degenerate) eigenvalues; it should not
be relied upon to always return the correct multiplicity for a degenerate eigenspace. [79]
A future version of dynamite may explore switching to the LOBPCG solver (see Chap. 3)
which does not suffer from this limitation. A detailed description of the convergence criteria
for SLEPc’s eigensolvers, including flags that can be used to adjust these criteria, can be
found in Section 2.5 of the SLEPc Users Manual. [76] (See the documentation of dynamite’s
config.initialize() function for information on how to pass “command-line” flags to
SLEPc).

For time evolution (action of the matrix exponential), unfortunately there is not such a
straightforward way of computing the error. As before, for an approximate output vector
w̃ ≈ e−iHtx we may define the residual vector

r = e−iHtx− w̃ (2.13)

but in this case there is no way to explicitly compute it. Instead we must rely on indirect
methods of estimating and controlling the error. dynamite uses SLEPc’s implementation of
the Expokit solver for the action of the matrix exponential; the solver uses internal error
metrics to attempt to keep the magnitude of the residual vector smaller than the requested
tolerance ϵ. The details of how this is done is out of the scope of this manuscript, but
can be found in the original work detailing the Expokit solver. [78] Note that there is no
explicit guarantee that the error will remain below the tolerance, but the error is usually
well-controlled in practice. Bounding the error of Krylov subspace techniques for quantum
time evolution is a long-standing and ongoing area of research; improved error estimates
could potentially be included in a future version of dynamite. [78], [80]–[86]
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2.4.2 Matrix-free computation

Most operators that one encounters in the study of many-body spin physics are sparse: an
overwhelming fraction of the matrix elements are zero. It is for this reason that dynamite
uses the sparse numerical linear algebra libraries PETSc and SLEPc for its solvers. By default,
the solvers use the compressed sparse row (CSR) storage format for matrices, in which only
nonzero matrix elements (and the necessary indices) are stored in memory. For an operator
of dimension 2L×2L, this reduces the cost of storage (and matrix-vector multiplication) from
O(4L) to O(2Lk), where k is the number of nonzero elements per row—and k is polynomial in
L for virtually all physically relevant operators. Of course, O(2Lk) still has the potential to
be quite large, and frequently is in practice. For the case that even the sparse representation
of an operator uses too much memory, dynamite implements a custom representation of
operators which we call the “XZC” representation, that leverages the tensor product structure
of spin chain operators to store them using as little as O(k) memory.3 The intuition is that
the operator is represented symbolically as a decomposition into strings of Pauli matrices;
instead of being stored, the elements of the large sparse matrix are computed “on-the-fly”
as they are needed. In the field of numerical linear algebra, this type of technique is known
as “matrix-free” computing; for historical reasons it is referred to as “shell matrices” in
dynamite. It dramatically reduces the memory usage, enabling computations that wouldn’t
be possible otherwise due to memory limitations—especially on GPUs, where VRAM is
limited. Usually, this comes with a trade-off: the need to compute matrix elements on-
the-fly adds to the computational cost, so the user pays for the reduction in memory usage
with an increase in the runtime. However, CSR matrix operations are frequently limited by
memory bandwidth rather than CPU usage—the speed is limited by how quickly the CPU can
retrieve matrix elements from main memory. By reducing the amount of data transferred
across the memory bus, it’s actually possible for matrix-free methods to be faster, while
simultaneously decreasing the memory usage! Whether this is the case in practice depends
on how fast the matrix elements can be generated in real time—and much effort in the
development of dynamite has been directed at optimizing this process to an extreme. In
Section 2.5, we compare the performance of shell and non-shell computations for various
problems. Here we describe how it works, and how it interfaces with the solvers.

The fundamental idea behind the XZC representation is that any operator on a set of L
spins can be decomposed as a linear combination of products of single-site Pauli operators.
Explicitly, for an operator on L spins, which has m terms in this decomposition, we may
define a pair of m×L binary matrices M (x) and M (z), and a length-m complex-valued vector
C, to represent an operator H as

H =
∑
i

Hi =
∑
i

Ci

⊗
j

(σx
j )

M
(x)
ij (σz

j )
M

(z)
ij (2.14)

where σx
j and σz

j are the Pauli X and Z operators on site j. In words, each row of M (x)

and M (z), and corresponding element of C, corresponds to one term of the operator. In
3The XZC representation is currently denoted “MSC” in various parts of the dynamite source code.
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each row, the 1’s in each binary matrix represents the locations in which a σx or σz Pauli
should be present (with 0’s corresponding to the identity Pauli on that site). σy operators
are represented via the product σxσz, when both M (x)

ij and M (z)
ij are equal to 1.

Because L in practice never exceeds 64, M (x) and M (z) are stored as vectors of integers.4
The bits of each integer represent the spin indices for which a σx and/or σz operator should
be included for that term. For the Ci, it is straightforward to see that each value must be
either entirely real or entirely imaginary if the operator is Hermitian; this allows C to be
stored as a vector of real values (64-bit floating point numbers). All together, an operator
with m terms is stored as two length-m vectors of integers plus one length-m vector of
real numbers, yielding an overall storage cost of O(m). The quantity k mentioned in the
previous paragraph corresponds to the number of unique rows of M (x); in most situations m
is proportional to k.

We now describe how computations are implemented on this format—specifically matrix-
vector multiplication, which is by far the most important matrix operation for the iterative
solvers described in Section 2.4.1. By default, dynamite uses product states in the Z basis
as a basis for its representation of the Hilbert space. For the full Hilbert space of length 2L,
dynamite takes basis state of index α to correspond to the product state |α⟩ =⊗j |αj⟩, where
αj is the jth bit of the binary representation of the integer α (and with |0⟩ corresponding to an
“up” spin, with σz eigenvalue +1, and |1⟩ corresponding to a “down” spin, with eigenvalue−1).
Then, an arbitrary state vector |ψ⟩ is stored as an array x⃗ of 2L complex numbers xα, such
that |ψ⟩ = ∑α xα |α⟩. This yields a very straightforward implementation of multiplication
of operators by states. The operator-state multiplication can be decomposed as as the sum
over multiplications by each of the Hi of Eq. 2.14:

H |ψ⟩ =
∑
i,α

Hixα |α⟩ (2.15)

It is straightforward to see that the product of a single term Hi from Eq. 2.14 with a product
state |α⟩ yields another product state |β⟩ multiplied by a coefficient:

Hi |α⟩ = Ci

⊗
j

(σx
j )

M
(x)
ij (σz

j )
M

(z)
ij |αj⟩ = (−1)

∑
j M

(z)
ij αjCi |M (x)

i,∗ ⊻ α⟩ (2.16)

where M (x)
i,∗ is the ith row of M . In words, the result product state is |β⟩, where β is the

bitwise XOR of the integer α and the ith row of M (x), multiplied by the coefficient Ci, with
a sign flip if an odd number of bits are set in the bitwise AND of the ith row of M (z) and α.

This is very promising from an implementation perspective. As described above, the
rows of M (x) and M (z), as well as the product states α, will be represented as integers,
this operation can be performed extremely quickly using bitwise operations. Computing
β =M

(x)
i,∗ ⊻ α costs a single bitwise XOR. Computing the sign flip costs just a bitwise AND,

4dynamite uses 32-bit integers by default, but can be configured to use 64-bit integers if L is to exceed
31.
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a popcount operation to count the number of bits set5, and another bitwise AND to get
the least significant bit of the result (the parity of the number of bits set). Finally flipping
the sign of Ci costs a single XOR instruction, and then a fused multiply-add (one machine
instruction in modern CPUs) can be used to multiply xα by the sign-flipped Ci and add it
into the appropriate element yβ of the output vector. Overall, computing the action of each
term of Hi on each basis state costs two bitwise XORs, two bitwise ANDs, a popcount, and
a fused multiply-add—not very expensive at all!

With that, we have a straightforward algorithm for computing a matrix-vector multipli-
cation using the XZC representation of operators, given as pseudocode in Code Listing 2.7.
The code listing includes one small addition that has not yet been discussed, which is the
conversion of indices to states and vice versa. As previously mentioned, when using the full
Hilbert space this operation corresponds to the identity—index α corresponds to product
state |α⟩. However when the Hilbert space dimension is reduced into a symmetry subspace,
this may not be the case. The functions state_to_idx and idx_to_state represent the
conversion between indices and integers representing the corresponding product states.

2.5 Performance results
In this section we present performance results for dynamite, measuring both runtime and
memory usage. We compare the performance of various computational settings, including
single-core, multiple cores on the same compute node, multiple cores distributed across sev-
eral compute nodes, and GPU computations. We also benchmark compressed sparse row
(CSR) format for matrix storage versus dynamite’s custom matrix-free XZC format (see Sec-
tion 2.4.2). We benchmark using three different Hamiltonians (introduced in the examples
of Sec. 2.3) which are representative of the range of models dynamite is useful for. Impor-
tantly, they cover a wide variation in number of non-zero elements per row of the matrix, as
described in Table 2.1—which is one of the primary factors influencing computational cost.
The Heisenberg + random fields and SYK models also have conserved quantities that allow
us to benchmark dynamite’s performance when working in subspaces.

All benchmarks in this section were performed on the Department of Energy’s Perlmutter
supercomputer at NERSC. The CPU benchmarks were performed on nodes having two AMD
EPYC 7763 processors, each with 64 cores, for a total of 128 cores per node. Each node has a
total of 512 Gb DDR4 RAM, with 256 Gb attached to each processor. All GPU benchmarks
were performed using one Nvidia A100 GPU with up to 80 Gb attached VRAM, connected
to one AMD EPYC 7763 processor (of which a single core was used), with 256 Gb DDR4
RAM. For more details on Perlmutter’s specifications, see the cluster documentation. [87]

In Tables 2.2 and 2.3 we report performance results for the eigsolve and evolve methods
of dynamite respectively. For eigensolving, we measure the cost of solving for the ground
state of the model, to the default tolerance of 10−8. For time evolution, we benchmark the

5popcount is a native machine instruction in most modern CPUs.
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# matvec() computes y += H*x, where H is represented in XZC form by:
# - Mx (array of integers)
# - Mz (array of integers)
# - C (array of real numbers)
function matvec(Mx, Mz, C, x, y)

for alpha in 0:dim(x)
for i in 0:nterms

in_state = idx_to_state(alpha)
out_state = Mx[i] ^ in_state # bitwise XOR
beta = state_to_idx(out_state)

# & means bitwise AND
flip_sign = parity_of_set_bits(Mz[i] & in_state)

if flip_sign
coeff = -C[i]

else
coeff = C[i]

end

y[beta] += coeff*x[alpha]
end

end
end

Code Listing 2.7: Pseudocode for “matrix-free” matrix-vector multiplication, in
the XZC representation. This is the basic structure used by dynamite, although with
many optimizations layered on top.

Model Non-zero elements per row Conserved quantities
Long-range (Eq. 2.1) 2L (none)

Heisenberg + random fields (Eq. 2.3) ≤ L Total magnetization
SYK (Eq. 2.4) L4/24 +O(L3) Parity

Table 2.1: The models used for benchmarking in Sec. 2.5. The number of nonzeros
per row for the Heisenberg model is variable because some of the off-diagonal terms cancel to
zero; it is bounded by the given figure. Note that the long-range model, despite its all-to-all
connectivity, has only a linear number of nonzero elements per row because the long-range
ZZ terms all sum together on the diagonal.
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evolution of a product state6 to a time t = 50/||H||∞, again to within the default tolerance
of 10−8. We normalize t in this way because the computational cost of time evolution in
dynamite scales with ||Ht||; the normalization accounts for the arbitrary energy scale in
the definition of each Hamiltonian and allows a fair comparison across models and system
sizes. We note that the default tolerances are almost certainly tighter than is necessary for
most physics studies; in practice users may want to reduce the tolerance to improve speed.
In this section, all reported timings are real elapsed (“wall”) time, and include all phases
of the computation including setup steps like initialization of MPI and construction of the
operators.

From the data in the two tables we can make a few observations. In single-core CPU
performance, we observe that the CSR implementation outperforms the matrix-free imple-
mentation by a considerable amount. This makes sense, considering that the matrix-free
implementation has to do more computational work to compute the matrix elements on-
the-fly instead of pulling them from memory. The tradeoff is clear, however, in the memory
usage, which is always less for the matrix-free implementation than CSR. Furthermore we
observe that, as expected, the reduction in memory usage for the matrix-free implementation
depends strongly on the number of nonzero elements per row of the model (see Table 2.1).
SYK, which has the most nonzeros per rows, has the matrix-free implementation showing a
dramatic reduction in memory usage of over 24× compared with CSR, for L = 22. This gap
is expected to only increase at larger system sizes, but the memory usage for CSR matrices
for SYK is so large for L = 28 spins that we are not able to collect performance data for
that case: estimating the memory usage with dynamite’s Operator.estimate_memory()
function suggests that it would require over 100 terabytes to store such a matrix!

The performance tradeoff picture changes, however, when we look at parallel performance—
both in the case of multicore CPU and GPU computations. In several cases, the matrix-free
implementation actually outperforms the CSR implementation! There is actually a very
straightforward explanation for this behavior: the computation is not actually limited by
a computational bottleneck, but by the memory bandwidth. Because the 128 cores on one
node, and the many thousands of cores in the GPU, share memory, the memory bus is not
sufficiently fast to keep all of them supplied with data—and in the CSR implementation,
there is simply no way around this, because the matrix elements need to be pulled from
memory. On the other hand, the matrix-free implementation puts significantly less pressure
on the memory bus, and the addition of the extra cores gives enough computational power
to handle the extra computation required to compute the matrix elements when needed.
Essentially the only thing that needs to be drawn from memory in that case is the vector
data itself—and even with that, dynamite’s matrix-free implementations are designed to
make use of the on-chip memory cache as much as possible to reduce this. Furthermore, ex-
cept perhaps in the case of large SYK Hamiltonians where there are a very large number of
terms of the Hamiltonian, the XZC representation used to generate the matrix elements can
fully remain in cache. Consistent with these facts is that the speed ratio between the CSR

6The performance of dynamite’s time evolution solver is not expected to depend on the initial state.
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Model
Configuration Eigensolve

L Hardware Matrix mode Wall time Memory [GB]

Heisenberg
+random

fields

24
dim: 2,704,156

nonzeros: 24

1 CPU core
CSR 0:00:12.808 1.618

Matrix-free 0:01:05.621 0.867

1 CPU node
(128 cores)

CSR 0:00:04.648 11.714
Matrix-free 0:00:03.965 11.248

GPU
CSR 0:00:06.309 ≤ 80

Matrix-free 0:00:03.974 ≤ 80

30
dim: 155,117,520

nonzeros: 30

1 CPU node
(128 cores)

CSR 0:02:37.938 141.844
Matrix-free 0:05:26.727 59.624

GPU Matrix-free 0:02:00.793 ≤ 80

Long
range

22
dim: 4,194,304

nonzeros: 44

1 CPU core
CSR 0:04:07.932 5.069

Matrix-free 0:06:22.741 1.311

1 CPU node
(128 cores)

CSR 0:00:17.864 19.154
Matrix-free 0:00:19.227 11.347

GPU
CSR 0:00:18.184 ≤ 80

Matrix-free 0:00:09.749 ≤ 80

28
dim: 268,435,456

nonzeros: 56

1 CPU node
(128 cores) Matrix-free 0:40:37.351 89.840

GPU Matrix-free 0:18:39.491 ≤ 80

SYK
22

dim: 2,097,152

nonzeros: 7,547

1 CPU node
(128 cores) Matrix-free 0:26:44.837 17.131

2 CPU nodes
(256 cores) CSR 0:11:31.164 472.640

GPU Matrix-free 0:28:45.358 ≤ 80

Table 2.2: Cost of solving for the ground state, for various models and configura-
tions. Exact memory usage not reported for GPU runs because tooling was not available
to measure the peak GPU memory usage; bounds correspond to the amount of attached
memory on the GPUs used for testing.
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Model
Configuration Time evolution

L Hardware Matrix mode Wall time Memory [GB]

Heisenberg
+random

fields

24
dim: 2,704,156

nonzeros: 24

1 CPU core
CSR 0:00:18.479 2.306

Matrix-free 0:01:35.774 1.573

1 CPU node
(128 cores)

CSR 0:00:02.773 12.702
Matrix-free 0:00:05.348 12.193

GPU
CSR 0:00:06.887 ≤ 80

Matrix-free 0:00:04.113 ≤ 80

30
dim: 155,117,520

nonzeros: 30

1 CPU node
(128 cores)

CSR 0:02:02.834 180.944
Matrix-free 0:04:22.168 97.270

GPU Matrix-free 0:01:30.241 ≤ 80

Long
range

22
dim: 4,194,304

nonzeros: 44

1 CPU core
CSR 0:01:09.491 6.146

Matrix-free 0:01:32.764 2.384

1 CPU node
(128 cores)

CSR 0:00:06.958 19.593
Matrix-free 0:00:06.524 12.343

GPU
CSR 0:00:19.050 ≤ 80

Matrix-free 0:00:04.386 ≤ 80

27
dim: 134,217,728

nonzeros: 54

1 CPU node
(128 cores)

CSR 0:02:45.128 331.246
Matrix-free 0:02:58.955 84.435

GPU Matrix-free 0:01:10.321 ≤ 80

SYK
22

dim: 2,097,152

nonzeros: 7,547

1 CPU node
(128 cores)

CSR 0:04:20.826 412.341
Matrix-free 0:02:42.996 16.776

2 CPU nodes
(256 cores)

CSR 0:02:42.236 470.659
Matrix-free 0:01:59.353 67.093

GPU Matrix-free 0:02:45.066 ≤ 80

Table 2.3: Cost of time evolution of a random state to a time t = 50/||H||∞,
for various models and configurations. Exact memory usage not reported for GPU
runs because tooling was not available to measure the peak GPU memory usage; bounds
correspond to the amount of attached memory on the GPUs used for testing.
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implementation and the matrix-free one scales with the number of non-zero elements per
row—corresponding to the fact that memory bandwidth is more of a bottleneck when there
are more matrix elements. To summarize, in the parallel setting, it is often preferable to use
the matrix-free implementation, because it simultaneously is faster and uses less memory.

Finally, we may compare the performance across the different hardware types. As is
expected, in all cases using a single core is the slowest. In most cases, the matrix-free GPU
performance is fastest, varying from a few times faster than the performance of 128 CPU
cores to roughly comparable speed, depending on the model and problem size. However, we
note that 128 CPU cores consist of an entire CPU node on Perlmutter, while there are 4
A100 GPUs per GPU node. So, for tasks such as averaging over disorder realizations, where
computations can be “embarrassingly parallelized” by running one instance on each GPU on
a node, the total computational throughput of a GPU node will in all cases exceed that of
a CPU node by several times. (We also note that Perlmutter’s 128 cores per CPU node is
on the large end; many compute clusters have only 32, 48, or perhaps 64 cores per node).
The conclusion is that, if GPUs are available, they are usually the fastest option. The only
drawback to running on them is that there is hard limit to the system sizes they can run due
to the limit of their total attached memory. On the Perlmutter GPUs, which have at most 80
GB of attached memory, even in matrix-free mode computations are limited to L = 27 spins
with no subspaces in use, and perhaps a few more with the use of subspaces (e.g. L = 30 for
the Heisenberg model with total magnetization conservation enabled), due to the memory
cost just of storing state vectors. Parallelizing a single computation across several GPUs in
dynamite is currently in development, but is not yet supported. Thus for reaching the very
largest system sizes, the only option is to use CPU parallelism, perhaps across several nodes
if necessary.

2.6 Discussion and outlook
In numerical studies of quantum many-body phenomena, one cannot avoid the information-
theoretic fact that the number of classical bits required to store an arbitrary quantum state
is exponential in the number of particles of the quantum system. In certain cases, such as
those involving low amounts of entanglement, there are ways to approximate a subset of
states efficiently, but the generic case does not permit such optimizations. Fortunately, with
the tools of modern supercomputing it is possible to perform linear algebra on astoundingly
large vector spaces, with dimension exceeding even one trillion—making it possible to directly
numerically study many-body quantum systems of nontrivial size.

In this chapter we have presented dynamite, a software package for the numerical study
of many-body systems of spin-1/2 particles (and other systems which can be mapped onto
them). dynamite provides a straightforward and intuitive Python interface, yet the com-
putations are performed by a highly optimized backend built from the ground up to enable
massive parallelization on modern supercomputer clusters, whether via distributed memory
CPU computing or acceleration on GPUs. Particularly notable is dynamite’s symbolic rep-
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resentation of quantum operators, by which computations can be performed “matrix-free,”
reducing memory usage considerably while often also improving speed.

Moving forward, the most obvious next step is to implement multi-GPU computations in
dynamite, which will help alleviate the main limitation of GPU computing in dynamite—the
limited memory attached to a single GPU. This feature is already in development; multi-
GPU computing only recently has become a serious tool in supercomputing and thus its
support on the supercomputers to which we have access is imperfect, but we expect multi-
GPU dynamite to be available in production once these issues have been worked out. We also
note that large-memory GPUs are currently in high demand for machine learning applications
as well, so improvements in the VRAM per GPU can be expected on the hardware side as
well. Aside from that, a crucial feature of dynamite is its ability to take advantage of
symmetries in the physical system to reduce the dimension of the Hilbert space on which
computations will be performed. So, another promising path forward is to implement more
of these conservation laws, perhaps including conservation of momentum corresponding to
lattice symmetries. Finally, there are more improvements to be had on the algorithmic side.
For example, leveraging recently discovered algorithms and new types of hardware has been
shown to have the potential to accelerate certain computations dramatically [88].

In Chapter 3, we discuss how a relatively new algorithm called LOBPCG can be pushed
to improve the performance of the mid-spectrum eigensolving that we explored in Sec. 2.3.2,
with the help of a hand-tuned matrix-vector multiplication designed specifically for the
Heisenberg model.
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Chapter 3

A Scalable Matrix-Free Iterative
Eigensolver for Studying Many-Body
Localization

3.1 Introduction
A fundamental assumption in the traditional theory of statistical mechanics is that an iso-
lated system will in general reach an equilibrium state, or thermalize. As early as the mid-20th

century, Anderson demonstrated that a single particle moving in a highly disordered land-
scape can violate this assumption [89]. While surprising, that result does not readily extend
to many-particle systems that exhibit strong interactions between the constitutent particles.
The question of whether a similar effect could manifest in a strongly-interacting many-body
system remained open for decades. This elusive phenomenon has been termed “many-body
localization” (MBL).

Recently, advances in both high performance computing and experimental control of
individual quantum particles have begun to yield insight into MBL. Both experimental [90]–
[95] and numerical [63], [96]–[99] results have shown evidence of localization in small strongly-
interacting multiparticle systems of 10-20 spins. Unfortunately, extrapolating results from
these small system sizes to the infinitely-large thermodynamic limit has proven difficult. This
lack of clarity has inspired a vigorous debate in the community about precisely what can be
learned from small-size results. For example, it has been proposed that certain features do
not actually exist at infinite system size [100], and even that MBL itself is only a finite-size
effect [101]!

The primary goal of most studies is to identify and characterize a localization transition.
In the thermodynamic limit, as the strength of the system’s disorder increases, theory pre-
dicts a sharp, sudden change from a thermal to a localized state. Unfortunately, in the small
systems available for study, that sharp transition turns into a smooth crossover, leading to
the confusion about what constitutes the transition itself. Numerical evidence suggests that
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the transition sharpens rapidly as system size increases, so accessing as large systems as
possible is imperative for investigating MBL.

In pursuit of that goal, Luitz et al. used large-scale numerical linear algebra to show a
localization transition for system sizes up to L = 22 [63], and in a following paper extracted
useful data up to L = 24 [62]. In order to compute interior eigenstates for the MBL problem,
the shift-and-invert Lanczos algorithm was used in combination with sparse direct solvers
for solving the linear systems. One of the major disadvantages of this technique is that
constructing the LU factorizations becomes extremely memory demanding, due to the so
called fill in, for large number of spins L. Table 3.1 shows that the memory footprint of the
LU factorization computed via STRUMPACK [102] grows rapidly as function of L. See also
[62]. Hence, thousands of nodes on modern high performance computing infrastructures are
needed to go beyond L = 24.

L n STRUMPACK LOBPCG(64)

16 12,870 66MB 8MB

18 48,620 691MB 31MB

20 184,756 8GB 118MB

22 705,432 92GB 451MB

24 2,704,156 1TB 2GB

26 10,400,600 15TB 7GB

Table 3.1: Comparison of memory footprint. Total memory footprint is presented as a
function of the spin chain length L for LU factorizations, computed via STRUMPACK, and
the new matrix-free LOBPCG algorithm, with block size 64. The problem size is given by n.

In this paper, we introduce an new approach based on the locally optimal block pre-
conditioned conjugate gradient (LOBPCG) algorithm to overcome the memory bottleneck
that the shift-and-invert Lanczos algorithm faces. As shown in Table 3.1, we are able to
reduce the memory footprint by several orders of magnitude, e.g., from 15TB to only 7GB
for L = 26. This new approach will enable us to simulate spin chains on a single node, even
up to L = 24. For larger spin chains we only require a few nodes.

The paper is organized as follows. We first review the Heisenberg spin model and MBL
metrics in Section 3.2. Next, the LOBPCG eigensolver with efficient matrix-free block
matrix-vector operations is discussed in Section 3.3. Then in Section 3.4, we illustrate
the new matrix-free LOBPCG eigensolver for Heisenberg spin chains of sizes up to L = 26.
Finally, the main conclusions are formulated in Section 3.5.
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3.2 Problem Formulation
In this section we briefly review the properties of the spin chain model that most frequently
is studied by numerical simulations of MBL.

3.2.1 Heisenberg Spin Model

We consider the nearest-neighbor interacting Heisenberg spin model with random on-site
fields:

H =
∑
⟨i,j⟩

S⃗i · S⃗j +
∑
i

hiS
z
i , (3.1)

where the angle brackets denote nearest-neighbor i and j, hi is sampled from a uniform
distribution [−w,w] with w ∈ R+

0 , and

S⃗i · S⃗j = Sx
i S

x
j + Sy

i S
y
j + Sz

i S
z
j ,

where Sα
i = 1

2
σα
i , with σα

i the Pauli matrices operating on lattice site i and α ∈ {x, y, z}.
The parameter w is called the disorder strength, and is responsible for inducing the MBL
transition. The values hi are sampled randomly each time the Hamiltonian is instantiated,
and the relevant physics lies in the statistical behavior of the set of all such Hamiltonians. The
individual Hamiltonians H with independently sampled hi are called disorder realizations.

Note that in (3.1) each term of each sum has an implied tensor product with the iden-
tity on all the sites not explicitly written. Consequently, the Hamiltonian for L spins is a
symmetric matrix of dimension N = 2L and exhibits the following tensor product structure

H =
L−1∑
i=1

I ⊗ · · · ⊗ I ⊗Hi,i+1 ⊗ I ⊗ · · · ⊗ I

+
L∑
i=1

I ⊗ · · · ⊗ I ⊗ hiSz
i ⊗ I ⊗ · · · ⊗ I,

where Hi,i+1 = Sx
i S

x
i+1 + Sy

i S
y
i+1 + Sz

i S
z
i+1 is a 4-by-4 real matrix and I is the 2-by-2 identity

matrix. Remark that by definition, all matrices Hi,i+1 are the same and independent of the
site i. For our experiments, we use open boundary conditions, meaning that the nearest-
neighbor terms do not wrap around at the end of the spin chain. Open boundary conditions
can be considered to yield a larger effective system size because of the reduced connectivity.

The state of each spin is described by a vector in C2, and the configuration of the entire
L-spin system can be described by a vector on the tensor product space (C2)⊗L. In this
specific case, however, the Hamiltonian’s matrix elements happen to all be real, so we do
not include an imaginary part in any of our computations. Furthermore, our Hamiltonian
commutes with the total magnetization in the z direction, Sz =

∑L
i=1 S

z
i . Thus it can be

block-diagonalized in sectors characterized by Sz ∈ [−L
2
,−L

2
+ 1, . . . , L

2
− 1, L

2
]. The vector
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space corresponding to each sector has dimension n =
(

L
Sz+L

2

)
such that the largest sector’s

dimension is n = L!
(L
2
)!(L

2
)!
, and this corresponds to the actual dimension of the matrices on

which we operate, see Table 3.1. While these subspaces are smaller than the full space,
their size still grows exponentially with the number of spins L. Thus, the problem becomes
difficult rapidly as L increases. Furthermore, the density of eigenvalues in the middle of the
spectrum increases exponentially with L. Thus the tolerance used to solve for these internal
eigenvalues must be made tighter rapidly as L increases.

3.2.2 Metrics for Localization

With the problem’s matrix clearly defined, we now need a way of quantifying localization
from the eigenvalues and eigenvectors. There are multiple quantities that can be used for this
purpose. We focus on two here: one based on the eigenvalues, and one on the eigenvectors.
The eigenvalue-based method (adjacent gap ratio) has been used in multiple previous works
[96], [97], [101], [103], but suffers from large statistical noise and thus requires many samples
to be usable. To reduce the number of samples required, we focus on the eigenvector-based
method in our experiments.

3.2.2.1 Adjacent Gap Ratio

Random matrix theory informs us that the statistical distribution of eigenvalues will differ
between localizing and thermalizing Hamiltonians [103]. In particular, we expect eigenvalues
of a thermal Hamiltonian to repel each other, i.e., hybridization of eigenvectors prevents them
from generally coming too close to one another. The eigenvalues of a localized Hamiltonian
should not display this behavior: we expect them to be Poisson distributed. Therefore,
we can measure localization by comparing the relative size of gaps between the eigenvalues.
Thermal Hamiltonians will generally have more consistently sized gaps due to level repulsion.

The adjacent gap ratio is defined as follows

ri =
min(∆i,∆i+1)

max(∆i,∆i+1)
, ∆i = λi − λi−1,

where the eigenvalues λi are sorted in increasing order. Quantitatively, random matrix
theory can inform the precise values we expect in the two cases, averaged over many pairs
of neighboring eigenvalues. In the thermal case, we expect ⟨r⟩ ∼ 0.53, while for localizing
Hamiltonians we expect ⟨r⟩ ∼ 0.39 [103].

3.2.2.2 Eigenstate Entanglement Entropy

The eigenvectors of the Hamiltonian can also help inform us about localization. In a thermal
system, we expect quantum entanglement to be widespread, while in a localized system, the
entanglement is not expected to be extensive. This idea can be quantified by choosing a cut
which divides the spin chain into two pieces, and measuring the entanglement across it. In
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practice, this entanglement is measured by removing one of the two pieces (by computing a
partial trace), and then measuring the increase in entropy due to its removal.

Mathematically, for an eigenvector x, the entanglement entropy between two subsystems
A and B can be computed as follows. Define ρ ≡ xx⊤ as the density matrix corresponding
to the state x, represented as a column vector. Now let ρA ≡ TrB[ρ] be the density matrix
of subsystem A, where TrB is the partial trace over sites in subsystem B. The entanglement
entropy is then

SAB = −Tr [ρA ln ρA] .

Numerically, this quantity is generally computed in the following way: (i) compute ρA directly
from x, (ii) compute the eigenvalues λi of ρA, and (iii) compute SAB = −∑i λi log λi. Note
that in the first step, we do not hold ρ itself at any point since it is a dense matrix of
dimension n× n, and thus is not feasible to store in memory. Fortunately, it is not hard to
compute the partial trace directly from x itself.

In this paper, we focus on the case in which we cut exactly in the middle of the spin
chain, such that subsystems A and B are the left and right halves of the system. In this
case, for eigenvectors corresponding to eigenvalues near 0, we expect the thermal case to
have entanglement entropy [104]

SL/2 =
L ln 2

2
− 0.5 (3.2)

In the localized case the entanglement entropy will not scale with L, but instead will attain
some constant value. For finite system sizes, we simply expect the entanglement entropy to
decrease from the above value as the system becomes more localized.

Not only the value of the entropy changes during the localization transition: the statistics
change as well. When compared across disorder realizations, the thermal entanglement
entropy should consistently be the value in Equation (3.2), and thus have small variance.
During the transition, however, we expect the entanglement entropy to depend strongly on
the specific disorder realization and thus the statistic will have a large variance. Empirically,
examining the variance of the entanglement entropy is one of the best ways to identify the
localization transition.

3.2.3 Multiple Levels of Concurrency

The MBL study allows for at least 4 levels of concurrency. The first level corresponds to the
need of averaging over (many) different and independently sampled disorder realizations in
order to obtain relevant statistical behavior. Since the disorder strength is responsible for
inducing the MBL transition, we also have to vary the disorder strength, giving rise to the
second level of concurrency. The third level corresponds to the eigenvalue chunks, i.e., for
each (large) eigenvalue problem, originating from one disorder realization and a particular
disorder strength, we have to compute eigenvalues from different regions of the spectrum
and their corresponding eigenvectors.
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All previous levels of concurrency are completely independent and can be implemented
in a massively parallel fashion by making use of iterative eigensolvers. The next level of
parallelism takes place within these eigensolvers. Although most iterative eigensolvers fol-
low a rather sequential procedure, each of the different steps within one iteration can be
implemented in parallel.

3.3 Matrix-Free LOBPCG Eigensolver
The Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) algorithm [105],
[106] is a widely used eigensolver for computing the smallest or largest eigenvalues and
corresponding eigenvectors of large-scale symmetric matrices. Key features of the LOBPCG
algorithm are: (i) It is matrix-free, i.e., the solver does not require storing the coefficient
matrix explicitly. It access the matrix by only evaluating matrix-vector products; (ii) It is
a block method, which allows for efficient matrix-matrix operations on modern computing
architectures; (iii) It can take advantage of preconditioning, in contrast to, for example, the
Lanczos algorithm.

In Section 3.3.1 we review the LOBPCG algorithm. Next, we discuss in Section 3.3.2
how the LOBPCG algorithm can be modified in order to compute interior eigenvalues and
its corresponding eigenvectors. Finally, we explain in Section 3.3.3 how the (block) matrix-
vector products can be efficiently implemented in parallel, both in OpenMP and MPI.

3.3.1 LOBPCG Eigensolver

Let H ∈ Rn×n be a symmetric matrix and denote its eigenvalues and corresponding eigen-
vectors by λ1 ≤ λ2 ≤ · · · ≤ λn and x1, x2, . . . , xn, respectively. Then the diagonal matrix of
the first k ≤ n eigenvalues Λ = diag(λ1, λ2, . . . , λk) and the rectangular tall-skiny matrix of
corresponding eigenvectors X = [x1, x2, . . . , xk] satisfy the following eigenvalue problem

HX = XΛ

and X is the solution to the trace minimization problem

min
X⊤X=I

trace
(
X⊤HX

)
. (3.3)

A similar trace maximization property exists for the eigenvectors corresponding to the k
largest eigenvalues of H.

The basic idea of the LOBPCG method introduced by Knyazev [105] is to solve this trace
optimization problem only locally in every iteration, in order to converge to the smallest
(or largest) eigenvalues and corresponding eigenvectors. This yields the following updating
formula

Xi+1 = argX∈Z min
X⊤X=I

trace
(
X⊤HX

)
,
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where
Z = span {Wi, Xi, Xi−1} ,

with Xi and Xi−1 the current and previous iterates, respectively, and Wi the preconditioned
residual

Wi = K−1 (HXi −XiΘi) ,

with K any preconditioner and Θi = X⊤
i HXi ∈ Rk×k. Note that Wi corresponds to the

preconditioned gradient of the Lagrangian

L(X,Λ) = 1

2
trace

(
X⊤HX

)
− 1

2
trace

(
X⊤XΛ− Λ

)
associated to (3.3) and evaluated at (Xi,Θi).

The approximations to the smallest k eigenvalues and eigenvectors, so called Ritz pairs
(λ̃j, x̃j), can numerically be obtained from the Rayleigh–Ritz method, i.e.,

ΘiV = V Λ̃,

where Λ̃ = diag(λ̃1, λ̃2, . . . , λ̃k) is a diagonal matrix containing the Ritz values on its diagonal
and V = [v1, v2, . . . , vk]. The corresponding Ritz vectors are given by x̃j = Xivj, for j =
1, 2, . . . , k.

A basic version of the LOBPCG method, given in algorithm 3.1, is relatively easy to
implement, however, it can suffer from numerical instability if not implemented carefully.
Therefore we used the robust variant, introduced in [106], in all our experiments.

3.3.2 Computing Interior Eigenvalues

The LOBPCG algorithm has several advantages, such as blocking and preconditioning, com-
pared to the Lanczos algorithm. However, the standard LOBPCG algorithm, as well as the
standard Lanczos algorithm, only allow for computing the lower or upper part of the spec-
trum.

Within the Lanczos algorithm this issue is solved by a shift-and-invert transformation

(H − σI)−1,

where σ ∈ R is the shift. This spectral transformation maps the eigenvalues closest to the
shift σ to the outer part of the transformed spectrum which then can be efficiently computed
by the shift-and-invert Lanczos algorithm. The big downside of this transformation is that it
requires a memory demanding LU factorization for inverting the shifted matrix. This makes
it impractical for large numbers of spins. As reported in [62], the computational cost of the
overall algorithm is dominated by the construction of the LU factorization.

In order to avoid storing the matrix and computing memory demanding LU factorizations,
we will make use of a different spectral transformation, the so called spectral fold [107]

(H − σI)2,
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Algorithm 3.1: Basic LOBPCG algorithm

Input: number of eigenpairs k and block size b ≥ k
X0 ∈ Rn×b: matrix of starting vectors with X⊤

0 X0 = I
Output: X ∈ Rn×k: matrix of approximate eigenvectors

Λ ∈ Rk×k: diagonal matrix of approx. eigenvalues

1 Residual: R = HX0 −X0(X
⊤
0 HX0).

2 Initialize: X = X0, P = [], and nc = 0.
while nc < k do

3 Apply preconditioner: W = K−1R.
4 Subspace: Z = [W,X,P ].
5 Rayleigh–Ritz:

(Z⊤HZ)

V1V2
V3

 =

V1V2
V3

Λ

6 Update: X ← WV1 +XV2 + PV3 and P ← WV1 + PV3.
7 Residual: R = HX −XΛ.
8 Update number of converged eigenpairs nc.

end
9 Return first k columns of X and leading k × k block of Λ.

where σ ∈ R is again the shift. This transformation maps all eigenvalues to the positive
real axis and the ones closest to the shift σ to the lower edge close to 0. Hence, we can use
the LOBPCG eigensolver in combination with matrix-free block matrix-vector operations
in order to compute interior eigenvalues and their corresponding eigenvectors. Because the
transformed eigenvalue problem

(H − σI)2x = λx

is symmetric positive definite, we will use a diagonal (Jacobi) preconditioned conjugate
gradient (PCG) method as preconditioner for the LOBPCG eigensolver, so that we again
can make use of matrix-free block matrix-vector operations.

3.3.3 Matrix-Free Matrix-Vector Product

In contrast to the shift-and-invert Lanczos algorithm, where the dominant computational cost
is the construction of the LU factorization, the dominant computational cost of the LOBPCG
algorithm is the (block) matrix-vector product. Note also that by applying a spectral fold
transformation, the matrix-vector product of the transformed matrix can be implemented
simply by repeatedly applying a standard matrix-vector product of our Hamiltonian.
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(a) OpenMP state ordering (b) MPI state ordering

Figure 3.1: Sparsity structure of the Hamiltonian. Here, L = 10. (a) the OpenMP
state ordering and (b) the MPI state ordering.

In order to implement this matrix-vector (MATVEC) operation matrix-free and effi-
ciently, we must consider our choice of basis states, as well as our ordering of these states
in the vector. We use two different orderings, one for the pure OpenMP and the other for
the hybrid MPI–OpenMP implementation. They are chosen to optimize for SIMD vector-
ization and communication bandwidth respectively. To conserve memory, we compute all
off-diagonal matrix elements on the fly, avoiding explicitly storing them.

3.3.3.1 Basis States

A convenient basis for the Hamiltonian is the Z-polarized product state basis: the states
in which every spin is in a Z-eigenstate. These states can be represented compactly as a
bitstring, with zeros representing the spin-up state and ones representing the spin-down state
(or vice versa). This representation, which is also used in [108], allows fast computation of
the values of matrix elements via bitwise operations. For example, the value of the term∑

⟨i,j⟩ S
z
i S

z
j can be computed in just a couple of operations:

inline double ZZ(int state, int L) {
// number of terms in the sum that are -0.25
int n_negative = __builtin_popcount(state ^ (state>>1));
return 0.25*(L - 2*n_negative - 1);

}
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3.3.3.2 Data Layout of Block Vectors

LOBPCG is a block solver, meaning that it operates on a block of several vectors at the
same time, usually 32 or 64 in our case. A crucial performance consideration is how this
data should be stored. When viewing this block as a tall, skinny dense matrix, there are two
obvious possibilities: row- or column-major. Other possibilities such as Z Morton ordering
exist, but there is no clear reason that they would give performance gains in this context.

Both intuitively and empirically, we find that row-major ordering yields a faster matrix-
vector multiplication than column-major does. From a data-locality perspective this makes
sense [109]. When we are performing the multiplication for a particular matrix element, in
the row-major case the sequence of relevant values in the input vector block are contiguous
in memory, meaning that they can all be fetched in the same cache line. Furthermore, the
multiplication can be vectorized with SIMD instructions. In the column-major case, those
same vector values are spread out in memory by a distance equal to the vector length, and
must be accessed separately. Furthermore, there is danger of concurrency issues with false
sharing in the column-major case. In particular, if threads are each given a unique set
of matrix rows to compute, they will never write to the exact same places in the output
vector. However, in the column-major case two threads are more likely to write to nearby
locations in memory. If these nearby locations are on the same cache line, serious performance
degradation can result.

3.3.3.3 OpenMP MATVEC

This single-node, pure OpenMP implementation targets the Intel Knight’s Landing archi-
tecture specifically, with the following aspects of the hardware in mind: (i) large number of
threads and hyper-threading, (ii) very fast MCDRAM used in cache mode, and (iii) 512-bit
SIMD vector units. In order to optimally use these features, an ordering of states was chosen
in which the off-diagonal matrix elements form a series of diagonal bands, see Figure 3.1(a).
The state ordering that produces these diagonal bands is simple: the states are simply sorted
lexicographically, or equivalently, sorted by their values when the bitstrings are interpreted as
integers. Iteration along these bands is very fast because the same operation is being applied
repeatedly to neighboring data values. This makes data access patterns easily predictable
for the prefetcher, and also allows easy vectorization with SIMD instructions.

Generally, when computing the off-diagonal elements, a given row index is converted to
its corresponding state bitstring, that bitstring is manipulated to yield a new state bitstring,
and that new state is converted back into a (column) index. That conversion from state
back to index can cause performance issues. In general it can be performed in O(log n) time
using binary search, but that can become a large overhead since it needs to be performed
for every matrix element that is computed. Instead, we compute the difference between the
row and column indices directly, using the state. Recall that the only off-diagonal elements
are flip-flop terms, which exchange two neighboring spins but do not affect any other part
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of the state. Consider a row corresponding to a state

xL−1 · · · xi+2, 0, 1, xi−1 · · ·x0,

where xj represents the configuration of spin j. It will have a matrix element connecting it
with the column corresponding to the state

xL−1 · · · xi+2, 1, 0, xi−1 · · ·x0.

It can be shown that in a lexicographical ordering, the difference in indices between these
two states is ∆ =

(
i∑i−1

i=0 xi

)
, where

(
n
k

)
is the binomial coefficient function.

In order to optimize for the prefetcher and for vectorization, we would like to operate
on many sequential values in memory, which this reordering allows us to do. However, we
would also like to compute all of the matrix elements for a single row of the matrix at the
same time, in order to optimize for temporal locality of write operations to the same location
in the output vector, such that the data can be stored in the cache in between writes. We
can optimally balance these needs by iterating across small blocks of rows, of a size that
corresponds to the L1 cache size. This allows us to iterate efficiently along each of the
sequential elements in a particular block while not losing relevant data from the cache. Each
OpenMP thread owns a unique set of rows of the matrix, corresponding to several of these
blocks, and thus there is no concern about race conditions or need for atomic operations.

3.3.3.4 MPI–OpenMP MATVEC

For the hybrid MPI–OpenMP implementation, we use one MPI rank per node, and OpenMP
for on-node parallelism. In this case, communication bandwidth is limiting for anything more
than a few MPI ranks. Thus, we choose a state ordering that minimizes the amount of data
that needs to be communicated. To do so, we employ a breadth-first-search based ordering
strategy, that is reminiscent of Cuthill–McKee reordering [110]. We begin with some initial
state, and perform a breadth-first search (BFS) through the graph corresponding to the
Hamiltonian, recording basis states as we encounter them. Due to the structure of the
Hamiltonian, this ordering greatly reduces the bandwidth of the matrix, as can be seen in
Figure 3.1(b). This narrow bandwidth allows communication with only neighboring ranks
in a linear topology, for up to ∼50 nodes.

This reordering does not permit the fast direct calculation of differences between indices
that was used in the pure OpenMP version, though that same method could be used along
with a lookup table. While this is ostensibly concerning, the index lookup time is ultimately
irrelevant because it only affects the speed of the computational portion of the matrix-vector
multiply. The communication is the dominant cost and the communication and computation
are overlapped, so there is no overhead from a slightly slower computational portion.
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3.4 Numerical Experiments
All numerical experiments were performed on the NERSC super computer called Cori which
has 2 different types of compute nodes:

• Intel Xeon “Haswell” compute nodes @2.3GHz, 2x16 cores and each 2 hyper-threads,
128GB DDR4 RAM.

• Intel Xeon Phi “Knights Landing” (KNL) compute nodes @1.4GHz, 68 cores and each
with 4 hyper-threads, 96GB DDR4 RAM, 16GB MCDRAM.

3.4.1 OpenMP MATVEC

The full OpenMP, single node implementation was used to solve instances of the problem
up to L = 24 spins. In this range of system sizes the required memory can easily fit on a
single node, and even fully in the MCDRAM of a single KNL node, see Table 3.1.

Figure 3.2 shows the parallel speedup of the block MATVEC with block size 32 on both
a Haswell and KNL node. The speedup is calculated as the ratio of running the OpenMP
MATVEC code using the full number of available threads including hyper-threading, 64
threads and 272 threads, respectively, and using only a single thread. As can be seen in this
figure, the implementation makes full use of the many-core architecture of the KNL nodes.
At smaller system sizes, there is not quite enough work for each core to do to allow full
utilization, but as the system size grows, all of the physical cores become well-utilized.

Figure 3.2: OpenMP parallel speedup. Here we present results for Haswell and KNL, for
the block MATVEC with block size 32. The vertical axes correspond to the speedup obtained
when running using the full number of available threads, when compared to running with
only a single thread on the same hardware.
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From a priori estimation and empirical evidence, it is clear that memory bandwidth
is the limiting factor for the pure OpenMP matrix-vector multiplication. We hypothesize
that competition for memory bandwidth is what prevents the Haswell nodes from efficiently
using all the cores. On the Haswell nodes the 32 cores are split into two 16-core sockets,
with each socket having four DIMMs. This means that four cores are using each DIMM
concurrently, and it seems that the DRAM simply can’t supply data fast enough to keep the
CPUs saturated.

On KNL, however, the (more numerous) cores have both a lower individual clock rate and
access to extremely fast 16GB of MCDRAM with 460GB/s total bandwidth. Our results
show that this hardware, along with the matrix-vector multiplication designed for efficient
vectorization, is able to keep all 68 cores supplied with data. In Figure 3.2 we also note that
the speedup is actually slightly higher than the number of physical cores. We hypothesize
that this is due to L1 and L2 cache effects, i.e., with less work per core in the parallel case,
it is more likely that requested memory location will already be in the cache. Hence, for the
remainder of the paper we will use the KNL compute nodes for all numerical experiments.

3.4.2 MPI–OpenMP MATVEC

For the hybrid MPI–OpenMP, we have implemented 3 different communication mechanisms:
blocking using MPI_Send/Recv, non-blocking using MPI_Isend/Irecv, and one-sided remote
memory access (rma) using MPI_Put. For the former ones we have also implemented 2
variants: one with and one without overlapping communication and local computation. The
overlapping is achieved by explicitly allocating one OpenMP thread to the MPI calls, while
the other threads perform the matrix-vector multiplication on the local matrix elements.

The results from a strong scaling experiment for all different variants of the MPI–OpenMP
MATVEC with L = 26 and block size 64 are shown in Figure 3.3. The top figures clearly
indicate that in this hybrid MPI-OpenMP case, the efficiency of the matrix-vector product is
ultimately limited by communication bandwidth since overlapping communication and local
computation yields a reduction of the wall time by 18% up to 36% in this case.

In Figure 3.3 we also note that the different communication mechanism result in very sim-
ilar timing results. This is probably due to the predictable nature of the communication, i.e.,
neighboring nodes only and at predictable times. Overall the non-blocking MPI_Isend/Irecv
implementation was found to be the most performant.

3.4.3 Eigenstate Entanglement Entropy

Using the pure OpenMP implementation up to system sizes of L = 24, we present preliminary
data on the entanglement entropy for the localization transition. The performance data for
these runs is given in Table 3.2.

For each disorder realization, 16 eigenpairs with eigenvalues nearest zero were computed,
and the half-chain entanglement entropy was computed for each eigenvector. As is described
in Section 3.2.2.2, the entropy in the thermal case in this regime is expected to scale linearly
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Figure 3.3: Strong scaling. Results are presented for the L = 26 MPI–OpenMP MATVEC
and block size 64 with blocking, non-blocking, and rma MPI communication.
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with L, with a constant correction of −0.5. To thus normalize the entropy across different
system sizes we defined a scaled entropy simply as

S̃ =
SL/2 + 1/2

L
.

In Figure 3.4, we plot the results of our computations of this scaled entropy. In general,
we expect the scaled entropy to attain a value of ln 2 in the thermal state for all system sizes,
and then to decrease as the system becomes localized. This corresponds with what we see in
our results, up to some small negative corrections at low system sizes, which were also seen
in [62], though that paper used a slightly different metric.

When plotting the variance of the entanglement entropy in Figure 3.5, we see a clear
description of the transition. At low disorder, every system size shows an exponential increase
towards the transition, manifested as a line in the log-scaled variance plot. This exponential
growth starts surprisingly early, and the slope of the growth in log scale, and thus the factor
in the exponent, is consistent across system sizes. This can be interpreted as a consistent
exponential approach to the transition, with the larger system sizes simply starting at smaller
values, with the starting value changing by a constant factor with each increase in system
size.

After this exponential growth, we see the curves peak, at a point which can be interpreted
as the center of the transition. Our three largest system sizes qualitatively converge on a
consistent point for this peak. With data for larger system sizes, we hope to be able to
resolve this point precisely. A clear next step is to run full disorder averaging at a full set of
disorder points for L = 24 and beyond. Timing results for L = 26 are given in Table 3.3. At
these system sizes, the exponential growth region should converge with the observed peak,
yielding insight into precisely where the transition occurs.

L LOBPCG tolerance Mean wall time

12 10−5 0.6 s
14 10−5 1.4 s
16 10−5 4.5 s
18 10−5 30.7 s
20 10−5 4.7min
22 10−5 1.0 h
22 10−6 1.2 h
24 10−6 16.6 h

Table 3.2: Runtime to solve for the 16 eigenpairs with eigenvalues nearest to 0. Runs used
a single KNL node with the full OpenMP solver implementation.
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Disorder strength w

Mean scaled entropy of eigenstates

Figure 3.4: Scaled half-chain entanglement entropy as a function of disorder
strength. We observe clear flow with increasing L.

Another next step is to do this same analysis but further away from the middle of the
spectrum. Since our solver is faster in that region where the eigenvalues are less dense, as
reported in Table 3.3, we should be able to observe the transition behavior at larger system
sizes. Such a speedup is not possible with the shift-and-invert Lanczos algorithm, whose
memory usage is ignorant to the value of the shift applied.

3.5 Conclusions
We have introduced a new approach to study many-body localization, which requires com-
puting many eigenvalues and corresponding eigenvectors of large Hamiltonians in different
regions of the spectrum. Our approach uses the LOBPCG algorithm, in combination with an
efficient and matrix-free implementation of the block matrix-vector multiplication on many-
core architectures to compute the desired eigenvalues and eigenvectors. Such an approach
allows us to overcome the memory bottleneck in the previously used shift-and-invert Lanczos
algorithm. As a result, the total memory footprint is reduced by several orders of magni-
tude, which allows us to compute eigenpairs of spin chains with up to L = 24 on a single
compute node. We have also developed an hybrid MPI–OpenMP version of the solver that
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can be run on several nodes. Because the MBL study requires solving eigenvalue problems
for many instances of Hamiltonians with random disorder terms, and computing eigenvalues
from different regions of the spectrum, the overall computation can scale to hundreds of
thousands of computational cores.

ε LOBPCG iter PCG iter time [h]

0.1 18 200 0.15

0.2 11 5,000 2.36

0.3 33 10,000 13.94

0.4 32 20,000 26.05

0.5 30 20,000 24.84

0.6 32 20,000 26.05

0.7 36 10,000 15.36

0.8 10 5,000 2.09

0.9 14 200 0.12

Table 3.3: Timing results. Here we present timings for computing 32 eigenpairs of L = 26
Hamiltonians as a function of the normalized shift ε. Runs used 32 KNL nodes and LOBPCG
with block size 64, tolerance 10−6, and preconditioned with PCG.
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Disorder strength w

Variance of half-chain entanglement entropy (log scale)

Figure 3.5: Variance of the half-chain entanglement entropy as a function of dis-
order strength. Again, we observe clear flow with the spin chain length L.
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Cryptographic tests of
quantum advantage
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The primary goal of quantum computing is to perform certain computations faster (or “bet-
ter” by some other metric) than classical computers, a notion which has been termed “quan-
tum advantage.” The pursuit of this goal has been complicated by two main challenges. The
first is that individual, precise, and coherent control of individual atoms (or other quantum
objects) is extremely difficult. The second is that, as we saw in the previous Part, modern
classical computers are extremely powerful, and can simulate quantum systems of nontrivial
size. This begs the question: what is the simplest computation one can do on a quantum
computer, that is hard or impossible for today’s best classical computers? While a seemingly
simple question, it is steeped in subtlety. For example, if a noisy quantum computer pro-
duces some output that would be infeasible for a classical computer to reproduce, how do we
reliably check that that output is actually correct? On the other hand, how do we ensure that
the supposedly hard computational problem is actually hard for classical computers, rather
than just sufficiently obscure that nobody had yet come up with a fast classical algorithm
for it?

In this Part, we pursue these questions, with a focus on the verifiability of tests of quan-
tum computational power, and how ideas from cryptography can be used to achieve these
goals. In Chapter 4, we examine an efficiently classically verifiable test based on quantum
sampling, which was first proposed in 2008, and break the underlying cryptography, show-
ing that there is actually an algorithm by which a classical impostor can “forge” the results
and impersonate a quantum device. This invalidates the test. In Chapter 5, we propose a
new efficiently-verifiable test of quantumness whose classical hardness is provably as hard
as factoring numbers. Factoring is arguably the computational problem which has received
the most research effort of any to try to find an efficient classical algorithm, giving good
confidence that the problem truly is classically hard. Furthermore, this new protocol can be
implemented with fewer quantum resources than Shor’s algorithm (the obvious way to use
factoring to demonstrate quantum power), making it more amenable to near-term devices. In
Chapter 6 we present a “proof-of-concept” experimental implementation of that new protocol,
and another related one, in a trapped-ion quantum computer. From a technical perspective,
the main innovation is the implementation of quantum measurements in the middle of a
quantum circuit, followed by further quantum gates, while maintaining high fidelity. Such
mid-circuit measurements have been a long-standing goal of experimental quantum comput-
ing, and are important not only for cryptographic protocols like the ones implemented here,
but also a number of other applications such as feed-forward error correction. Finally, in
Chapter 7, we present a novel method for performing coherent integer multiplication on quan-
tum computers, which is a crucial operation for the both cryptographic protocols described
earlier, and also the implementation of Shor’s algorithm. Our method both improves on the
asymptotic cost (in terms of gate count) of implementing multiplication, and simultaneously
reduces practical overheads.
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Chapter 4

Forging quantum data: classically
defeating an IQP-based quantum test

4.1 Introduction
Recent experiments have demonstrated groundbreaking quantum computational power in the
laboratory, showing quantum computational advantage [32]–[35]. In the past decade, much
theoretical work has gone into designing experimental protocols expressly for this purpose,
and providing evidence for the classical hardness of reproducing the experimental results [15],
[17]–[21], [23], [39], [41], [111]–[115]. A difficulty with many of them, however, is that the
quantum machine’s output is hard to verify. In many cases, the best known algorithm
for directly checking the solution is equivalent to classically performing the computational
task itself. This presents challenges for validation of the test’s results, because an ideal
demonstration of quantum advantage occurs in the regime where a classical solution is not
just difficult, but impossible with current technology. In that regime, experiments have
had to resort to indirect methods to demonstrate that their devices are producing correct
results [32]–[35].

In 2008, an efficiently-verifiable test of quantum computational advantage was proposed
based on “instantaneous quantum polynomial-time” (IQP) circuits—quantum circuits in
which all operations commute [116]. The protocol places only moderate requirements on
the quantum device, making it potentially a good candidate for near-term hardware. Fur-
thermore, later papers showed based on reasonable assumptions that classically sampling
from the resulting distribution should be hard [16], [36]. This suggests that a “black-box”
approach to cheating classically (by simply simulating the quantum device) is indeed com-
putationally hard, and only a couple hundred qubits would be required to make a classical
solution intractable.

Importantly, however, the classical verifier of the efficiently-verifiable protocol does not
explicitly check whether the prover’s samples come from the correct distribution (in fact,
doing such a check efficiently is probably not possible [36]). Instead, the sampling task is
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Figure 4.1: Algorithm runtime. Mean time to extract the secret vector s fromX-programs
constructed as described in [116]. Shaded region is the first to third quartile of the distri-
bution of runtimes. We observe that the time is polynomial and fast in practice even up to
problem sizes of hundreds of qubits. See Section 4.3.2 for a discussion of the O (n2) scaling.
The data points were computed by applying the algorithm to 1000 unique X-programs at
each problem size. The secret vector was successfully extracted for every X-program tested.
Experiments were completed using one thread on an Intel 8268 “Cascade Lake” processor.

designed such that bitstrings from its distribution will be orthogonal to some secret binary
vector s with high probability, and it is this property that is checked by the verifier. A
question that has remained open is whether a classical machine can efficiently generate
samples satisfying the orthogonality check, without necessarily approximating the actual
circuit’s distribution. In this work we show that the answer to this question is yes. We
give an explicit algorithm that can extract the secret bistring s underlying any instance of
the protocol, thus making it trivial to generate orthogonal samples that pass the verifier’s
test. The main results described here are a statement of the algorithm, a proof that a
single iteration of it will extract the secret vector s with probability 1/2 (which can be made
arbitrarily close to 1 by repetition), and empirical results demonstrating that the algorithm
is efficient in practice (summarized in Figure 4.1).

The following is a summary of the paper’s structure. In Section 4.2, we review the
protocol’s construction and some relevant analysis from the original paper. In Section 4.3
we describe the algorithm to extract the secret key, and therefore break the protocol’s security
against classical provers. There we also discuss briefly our implementation of the algorithm.
In Section 4.4 we discuss the results, and provide the secret key underlying the “$25 challenge”
that accompanied the publication of the protocol.
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4.2 Background
Overview of protocol Here we summarize the IQP-based protocol for quantum advan-
tage, in the standard cryptographic terms of an ostensibly quantum prover attempting to
prove its quantum capability to a classical verifier. We refer the reader to the work that
proposed the protocol for any details not covered here [116]. The core of the protocol is a
sampling problem. The verifier generates a Hamiltonian HP consisting of a sum of products
of Pauli X operators, and asks the quantum prover to generate samples by measuring the
state eiHP θ |0⊗n⟩ for some value of the “action” θ. The Hamiltonian HP is designed such
that the measured bitstrings {xi} are biased with respect to a secret binary vector s, so
that xi · s = 0 with high probability (where (·) represents the binary inner product, modulo
2). The classical verifier, with knowledge of s, can quickly check that the samples have
such a bias. Since s should be only known to the verifier, it was conjectured that the only
efficient way to generate such samples is by actually computing and measuring the quantum
state [116]. However, in Section 4.3 we show that it is possible to extract s classically from
just the description of the Hamiltonian.

X-programs A Hamiltonian of the type used in this protocol can be described by a rectan-
gular matrix of binary values, for which each row corresponds to a term of the Hamiltonian.
Given such a binary matrix P (called an “X-program”), the Hamiltonian is

HP =
∑
i

∏
j

XPij (4.1)

In words, a 1 in P at row i and column j corresponds to the inclusion of a Pauli X operator
on the jth site in the ith term of the Hamiltonian. The X-program also has one additional
parameter θ, which is the “action”—the integrated energy over time for which the Hamilto-
nian will be applied. For the protocol relevant to this work, the action is set to θ = π/8 (see
below).

Embedding a bias and verifying the output In order to bias the output distribution
along s, a submatrix with special properties is embedded within the matrix P . Notationally,
for a vector s and matrix P , let the submatrix Ps be that which is generated by deleting all
rows of P that are orthogonal to s. Letting X represent the distribution of measurement
results for a given X-program, it can be shown that the probability that a measurement
outcome is orthogonal to the vector s, Pr[X · s = 0], depends only on the submatrix Ps.
The rows of P that are orthogonal to s are irrelevant. The protocol uses that fact to attempt
to hide Ps (and thus s): starting with a matrix Ps that produces a bias, we may attempt to
hide it in a larger matrix P by appending rows that are random aside from having p · s = 0,
and then scrambling the new, larger matrix in a way that preserves the bias.

But what matrix Ps should one start with? In the protocol, the verifier sets Ps to the
generator matrix for a binary code of block length q ≡ 7 (mod 8) whose codewords c have
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wt(c) ∈ {−1, 0} (mod 4) (and both those weights are represented, that is, the codewords
do not all have weight 0 (mod 4)). In [116], the authors suggest specifically using a binary
quadratic residue (QR) code because it has the desired codeword weights. The action θ is
set to π/8. As described in Facts 1 and 2 below, this configuration leads to a gap between
the quantum and classical probabilities of generating samples orthogonal to s (for the best
known classical strategy before this work). The verifier’s check is then simply to request a
large number of samples, and determine if the fraction orthogonal to s is too large to have
likely been generated by any classical strategy.

In the two Facts below, we recall the probabilities corresponding to the quantum strat-
egy and previously best-known classical strategy [116]. The reasoning behind the classical
strategy (Fact 2) forms the setup for the new algorithm described in this paper; it is worth
understanding its proof before moving on to the algorithm in Section 4.3.

Fact 1. Quantum strategy
Let P be an X-program constructed by embedding a submatrix with the properties described

above. Let X be a random variable representing the distribution of bitstrings from an n-qubit
quantum state eiHP π/8 |0⟩ measured in the Z basis, where HP is defined as in Equation 4.1.
Then,

Pr [X · s = 0] = cos2
(π
8

)
≈ 0.85 · · · (4.2)

Proof. The entire proof is contained in [116]. To summarize, it is shown that for any string
z and corresponding submatrix Pz, the probability is

Pr [X · z = 0] = E
c

[
cos2 (θ · (q − 2wt(c))

]
(4.3)

where θ is the action, q is the number of rows in Pz and the expectation is taken over the
codewords c of the code generated by the submatrix Pz. When the values of θ = π/8,
q ≡ 7 (mod 8) and wt(c) ∈ {−1, 0} (mod 4) corresponding to the specific submatrix Ps are
substituted into this expression, the result is Equation 4.2.

Fact 2. Classical strategy of [116]
Again let P be an X-program constructed by embedding a submatrix with the properties

described above. Let d, e be two bitstrings of length n (the length of a row of P ). Define Pd,e

as the matrix generated by deleting the rows of P orthogonal to d or e. 1 Let y =
∑

pi∈Pd,e
pi

be the vector sum of the rows of Pd,e. Letting Y be the random variable representing the
distribution of y when d and e are chosen uniformly at random, then

Pr [Y · s = 0] = 3/4 (4.4)
1In [116], Pd,e is written as Pd ∩ Pe.
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Proof. (From [116]) With y defined as above, we have

y · s =
∑

pi∈Pd,e

pi · s (4.5)

By defintion, pi · s = 1 if pi ∈ Ps. Therefore y · s is equivalent to simply counting the
number of rows common to Ps and Pd,e, or equivalently, counting the rows in Ps for which
p · d and p · e are both 1. We can express this using the matrix-vector products of Ps with
d and e:

y · s =
∑
pi∈Ps

(p · d) (p · e) (4.6)

= (Ps d) · (Ps e) (4.7)

Considering that Ps is the generator matrix for an error correcting code, denote cd = Ps d
as the encoding of d under Ps. Then we have

y · s = cd · ce (4.8)

Now, note that if a code has wt(c) ∈ {−1, 0} (mod 4) for all codewords c, the extended
version of that code (created by adding a single parity bit) is doubly even, that is, has all
codeword weights exactly 0 (mod 4). A doubly even binary code is necessarily self-dual,
meaning all its codewords are orthogonal. This implies that any two codewords cd and ce of
the original (non-extended) code have cd · ce = 0 iff either cd or ce has even parity. Half of
our code’s words have even parity and cd and ce are random codewords, so the probability
that either of them has even parity is 3/4. Thus, the probability that y · s = 0 is 3/4, proving
the fact.

In the next section, we show that the classical strategy just described can be improved.

4.3 Algorithm
The classical strategy described in Fact 2 above generates vectors that are orthogonal to s
with probability 3/4. The key to classically defeating the protocol is that it is possible to
correlate the vectors generated by that strategy, such that there is a non-negligible probability
of generating a large set of vectors that all are orthogonal to s. These vectors form a system
of linear equations that can be solved to yield s. Finally, with knowledge of s it is trivial to
generate samples that pass the verifier’s test.

We follow a modified version of the classical strategy of Fact 2 to generate each vector
in the correlated set. Crucially, instead of choosing random bitstrings for both d and e
each time, we generate a single random bitstring d and hold it constant, only choosing new
random values for e with each iteration. If the encoding cd of d under Ps has even parity,
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Algorithm 1 ExtractKey(P )
The algorithm to extract the secret vector s from an X-program P . n is the number of
columns in the X-program, and $← means “select uniformly from the set.”

1. Let m∗ =
∑

p∈rows(P ) p.

2. Pick d
$← {0, 1}n.

3. Generate a large number (say 2n) of vectors mi via the following steps, collecting the
results into the rows of a matrix M .

a) Pick e
$← {0, 1}n

b) Let mi = m∗ +
∑

p∈rows(P )
p·d=p·e=1

p

4. Via linear solve, find the set of vectors {si} satisfying Msi = 1, where 1 is the vector
of all ones.

5. For each candidate vector si:

a) Extract Psi from P by deleting the rows of P orthogonal to si

b) If adding a parity bit to each of the columns c of Psi yields the generator matrix
for a code that is doubly even (all basis codewords are doubly even and mutually
orthogonal), return s and exit.

6. No candidate vector s was found; return to step 2.

all of the generated vectors mi will have mi · s = 0 (see Theorem 1 below). This occurs
with probability 1/2 over our choice of d.

In practice, it is more convenient to do the linear solve if all mi ·s = 1 instead of 0. This
can be easily accomplished by adding to each mi a vector m∗ with m∗ · s = 1. It turns out
that m∗ =

∑
p∈rows(P ) p has this property; see proof of Theorem 1.

The explicit algorithm for extracting the vector s is given in Algorithm 1.

4.3.1 Analysis

In this section we present a theorem and an empirical claim which demonstrate together
that Algorithm 1 can be used to efficiently extract the key from any X-program constructed
according to the protocol described in Section 4.2. The theorem shows that with probabil-
ity 1/2 a single iteration of the algorithm finds the vector s. The empirical claim is that
Algorithm 1 is efficient.
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Theorem 1. On input an X-program P containing a unique submatrix Ps with the prop-
erties described in Section 4.2, a single iteration of Algorithm 1 will output the vector s
corresponding to Ps with probability 1

2
.

Proof. If s is contained in the set {si} generated in step 4 of the algorithm, the correct
vector s will be output via the check in step 5 because there is a unique submatrix Ps with
codewords having wt(c) ∈ {−1, 0} (mod 4). s will be contained in {si} as long asM satisfies
the equation Ms = 1. Thus the proof reduces to showing that Ms = 1 with probability 1/2.

Each row of M is
mi = m∗ + m̄i (4.9)

for a vector m̄i defined as
m̄i =

∑
p∈rows(P )
p·d=p·e=1

p (4.10)

Here we will show that m∗ · s = 1 always and m̄i · s = 0 for all i with probability 1/2,
implying that Ms = 1 with probability 1/2.

First we show that m∗ · s = 1. m∗ is the sum of all rows of P , so we have

m∗ · s =
∑

p∈rows(P )

p · s =
∑

p∈rows(Ps)

1 (4.11)

We see that the inner product is equal to the number of rows in the submatrix Ps (mod 2).
This submatrix is a generator matrix for a code of block size 7 (mod 8); thus the number of
rows is odd and

m∗ · s = 1 (4.12)

Now we turn to showing that m̄i · s = 0 for all i with probability 1/2. In the proof of
Fact 2, it was shown that for any two vectors d and e, vectors m̄i generated by summing
rows pi of P for which d · pi = e · pi = 1 have

m̄i · s = 0 iff cd or ce has even parity (4.13)

where cd and ce are the encodings under Ps of d and e respectively. If d is held constant
for all i, and d happened to be chosen such that cd = Ps d has even parity, then m̄i · s = 0
for all i by Equation 4.13. Because half of the codewords have even parity, for d selected
uniformly at random we have m̄i · s = 0 for all i with probability 1/2.

We have shown that m∗ · s = 1 always and m̄i · s = 0 for all i with probability 1/2.
Therefore we have

Pr
d
[mi · s = 1 ∀ i] = 1/2

Thus Ms = 1 with probability 1/2. The algorithm will output s whenever Ms = 1, proving
the theorem.
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Before we move on, we remark that while Theorem 1 treats X-programs containing a
single unique submatrix with the relevant properties, the algorithm can easily be modified
to return the vectors s corresponding to all such submatrices, if more exist, by simply
accumulating all vectors s for which the check in Step 5(b) succeeds. We do note, however,
that for the protocol described in Section 4.2, the probability of “extraneous” submatrices
other than the one intentionally built into the matrix arising by chance is vanishingly small—
corresponding to the probability that a random binary linear code happens to be doubly even
and self-dual, which is bounded from above by 1/4n.

Now, having established that each iteration of the algorithm outputs s with probability
1/2, we now turn to analyzing its runtime.

Claim 1. (empirical) Algorithm 1 halts in O (n3) time on average.

All steps of the algorithm except for step 5 have O (n3) scaling by inspection. The
obstacle preventing Claim 1 from trivially holding is that it is hard to make a rigorous
statement about how large the set of candidate vectors {si} is. Because |{si}| = 2n−rank(M),
we’d like to show that on average, the rank of M is close to or equal to n. It seems reasonable
that this would be the case: we are generating the rows of M by summing rows from P , and
P must have full rank because it contains a rank-n error correcting code. But the rows of
P summed into each mi are not selected independently—they are always related via their
connection to the vectors d and e, and it’s not clear how these correlations affect the linear
independence of the resulting mi.

Despite the lack of a proof, empirical evidence supports Claim 1 when the algorithm
is applied to X-programs generated in the manner described in Section 4.2. Figure 4.2(a)
shows the average number of candidate keys checked by the algorithm before s is found, as
a function of problem size. The value is constant, demonstrating that the average size of the
set {si} does not scale with n. Furthermore, the value is small—only about 4. This implies
that M usually has high rank. In Figure 4.2(b) we plot explicitly the distribution of the rank
of the matrix M over 1000 runs of the algorithm on unique X-programs of size n = 245.
The blue bars (on the left of each pair) show the distribution over all X-programs tested,
and the sharply decaying tail supports the claim that low-rank M almost never occur.

A natural next question is whether there is some feature of the X-programs in that tail
that causes M to be low rank. To investigate that question, the algorithm was re-run 100
times on each of the X-programs that had n − rank (M) > 4 in the blue distribution. The
orange bars of Figure 4.2(b) (on the right of each pair) plot the distribution of n− rank (M)
for that second run. The similarity of the blue and orange distributions suggests that the
rank of M is not correlated between runs; that is, the low rank of M in the first run was
not due to any feature of the input X-programs. From a practical perspective, this data
suggests that if the rank of M is found to be unacceptably low, the algorithm can simply be
re-run with new randomness and the rank of M is likely to be higher the second time.
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Figure 4.2: Analysis of number of candidate vectors to be checked. (a) The average
number of candidate vectors checked before the secret vector s was found, when the algorithm
was applied to 1000 unique X-programs at each problem size tested. We observe that the
number of vectors to check is qualitatively constant in n. (b) The number of unconstrained
degrees of freedom n − rank (M) for matrices M generated in step 3 of Algorithm 1, for
“good” choices of d such that Ms = 1. The rapidly decaying tail qualitatively implies that it
is rare for any more than a few degrees of freedom to remain unconstrained. The blue bars
represent the distribution over 1000 unique X-programs of size n = 245. The algorithm was
then re-run on the X-programs that had n− rank (M) > 4 to generate the orange bars.

4.3.2 Implementation

An implementation of Algorithm 1 in the programming language Julia (along with the code
to generate the figures in this manuscript) is available online [117]. Figure 4.1 shows the
runtime of this implementation for various problem sizes. Experiments were completed using
one thread on an Intel 8268 “Cascade Lake” processor.

Note that Figure 4.1 shows O (n2) scaling, rather than O (n3) from Claim 1. This is
due to data-level parallelism in the implementation. Zn

2 vectors are stored as the bits of
64-bit integers, so operations like vector addition can be performed on 64 elements at once
via bitwise operations. Furthermore, with AVX SIMD CPU instructions, those operations
can be applied to multiple 64-bit integers in one CPU cycle. Thus, for n of order 100,
the ostensibly O (n) vector inner products and vector sums are performed in constant time,
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removing one factor of n from the runtime. The tests in Figure 4.1 were performed on a
CPU with 512 bit vector units.

4.4 Discussion
Modifications to the protocol A natural question is whether it is possible to modify the
original protocol such that this attack is not successful. Perhaps P can be engineered such
that either 1) it is not possible to generate a large number of vectors that all have a known
inner product with s, or 2) the rank of the matrix M formed by these generated vectors will
never be sufficiently high to allow solution of the linear system.

For 1), our ability to generate many vectors orthogonal to s relies on the fact that the
code generated by the hidden submatrix Ps has codewords c with wt(c) ∈ {−1, 0} (mod 4),
as shown in the proof of Theorem 1. Unfortunately, this property regarding the weights
of the codewords is precisely what gives the quantum sampling algorithm its bias toward
generating vectors with x · s = 0 (see Fact 1). This fact seems to preclude the possibility of
simply removing the special property of the submatrix Ps to prevent the attack.

For 2), the main obstacle is that the matrix P must have rank n because embedded in
it is a code of rank n. The only hope is to somehow engineer the matrix such that linear
combinations generated in the specific way described above will not themselves be linearly
independent. It is not at all clear how one would do that, and furthermore, adding structure
to the previously-random extra rows of P runs the risk of providing even more information
about the secret vector s. Perhaps one could prove that the rank of M will be large even
for worst-case inputs P—this could be an interesting future direction.

Protocols with provable hardness The attack described in this paper reiterates the
value of building protocols for which passing the test itself, rather than just simulating the
quantum device, can be shown to be hard under well-established cryptographic assumptions.
In the past few years, a number of new trapdoor claw-free function based constructions have
been proposed for demonstrating quantum computational advantage [39], [41], [115], [118],
as well as some based on other types of cryptography [44], [45]. Unfortunately, such rigorous
results come with a downside, which is an increase in the size and complexity of circuits that
must be run on the quantum device. Exploring simplified protocols that are provably secure
is an exciting area for further research.

The $25 challenge When the protocol was first proposed in [116], it was accompanied by
an internet challenge. The authors posted a specific instance of the matrix P , and offered
$25 to anyone who could send them samples passing the verifier’s check. The secret vector
s corresponding to their challenge matrix P is (encoded as a base-64 string):

BilbHzjYxrOHYH4OlEJFBoXZbps4a54kH8flrRgo/g==
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The key was extracted using the implementation of Algorithm 1 described in Section 4.3.2.
Shepherd and Bremner, the authors of the challenge, have graciously confirmed that this

indeed is the correct key.

Summary and outlook Here we have described a classical algorithm that passes the
interactive quantum test described in [116]. We have proven that a single iteration of the
algorithm will return the underlying secret vector with probability 1/2, and empirically shown
that it is efficient. The immediate implication of this result is that the protocol in its original
form is no longer effective as a test of quantum computational power. While it may be
possible to reengineer that protocol to thwart this attack, this paper reiterates the value
of proving the security of the verification step. Furthermore, while protocols for quantum
advantage with provable classical hardness are valuable in their own right, they can also be
used as building blocks for achieving new, more complex cryptographic tasks, like certifiable
random number generation, secure remote state preparation, and even the verification of
arbitrary quantum computations [39], [47], [48]. As quantum hardware continues to improve
and to surpass the abilities of classical machines, quantum cryptographic tools will play
an important role in making quantum computation available as a service. Establishing the
security of these protocols is an important first step.
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Chapter 5

Classically-verifiable quantum advantage
from a computational Bell test

5.1 Introduction
The development of large-scale programmable quantum hardware has opened the door to
testing a fundamental question in the theory of computation: can quantum computers out-
perform classical ones for certain tasks? This idea, termed quantum computational advan-
tage, has motivated the design of novel algorithms and protocols to demonstrate advantage
with minimal quantum resources such as qubit number and gate depth [15]–[23], [111]. Such
protocols are naturally characterized along two axes: the computational speedup and the
ease of verification. The former distinguishes whether a quantum algorithm exhibits a poly-
nomial or super-polynomial speedup over the best known classical one. The latter classifies
whether the correctness of the quantum computation is efficiently verifiable by a classical
computer. Along these axes lie three broad paths to demonstrating advantage: 1) sampling
from entangled quantum many-body wavefunctions, 2) solving a deterministic problem, e.g.
prime factorization, via a quantum algorithm, and 3) proving quantumness through interac-
tive protocols.

Sampling-based protocols directly rely on the classical hardness of simulating quantum
mechanics [15], [16], [20]–[23]. The “computational task” is to prepare and measure a generic
complex many-body wavefunction with little structure. As such, these protocols typically
require minimal resources and can be implemented on near-term quantum devices [32], [33].
The correctness of the sampling results, however, is exponentially difficult to verify. This
has an important consequence: in the regime beyond the capability of classical computers,
the sampling results cannot be explicitly checked, and quantum computational advantage
can only be inferred (e.g. extrapolated from simpler circuits).

Algorithms in the second class of protocols are naturally broken down by whether they
exhibit polynomial or super-polynomial speed-ups. In the case of polynomial speed-ups,
there exist notable examples that are provably faster than any possible classical algorithm
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[112], [113]. However, polynomial speed-ups are tremendously challenging to demonstrate
in practice, due to the slow growth of the separation between classical and quantum run-
times 1. Accordingly, the most attractive algorithms for demonstrating advantage tend to
be those with a super-polynomial speed-up, including Abelian hidden subgroup problems
such as factoring and discrete logarithms [119]. The challenge is that for all known protocols
of this type, the quantum circuits required to demonstrate advantage are well beyond the
capabilities of near-term experiments.

The final class of protocols demonstrates quantum advantage through an interactive
proof [39], [41], [120]–[125]. At a high level, this type of protocol involves multiple rounds of
communication between the classical verifier and the quantum prover; the prover must give
self-consistent responses despite not knowing what the verifier will ask next. This require-
ment of self-consistency rules out a broad range of classical cheating strategies and can imbue
“hardness” into questions that would otherwise be easy to answer. To this end, interactive
protocols expand the space of computational problems that can be used to demonstrate
quantum advantage; from a more pragmatic perspective, this can enable the realization of
efficiently verifiable quantum advantage on near-term quantum hardware.

Recently, a beautiful interactive protocol was introduced that can operate both as a test
for quantum advantage and as a generator of certifiable quantum randomness [39]. The core
of the protocol is a two-to-one function, f , built on the computational problem known as
learning with errors (LWE) [126]. The demonstration of advantage leverages two important
properties of the function: first, it is claw-free, meaning that it is computationally hard to find
a pair of inputs (x0, x1) such that f(x0) = f(x1). 2. Second, there exists a trapdoor : given
some secret data t, it becomes possible to efficiently invert f and reveal the pair of inputs
mapping to any output. (See Section 5.7.5 for an overview of trapdoor claw-free functions).
However, to fully protect against cheating provers, the protocol requires a stronger version
of the claw-free property called the adaptive hardcore bit, namely, that for any input x0
(which may be chosen by the prover), it is computationally hard to find even a single bit of
information about x1 3. The need for an adaptive hardcore bit within this protocol severely
restricts the class of functions that can operate as verifiable tests of quantum advantage.

Here, we propose and analyze a novel interactive quantum advantage protocol that re-
moves the need for an adaptive hardcore bit, with essentially zero overhead in the quantum
circuit and no extra cryptographic assumptions. We present four main results. First, we
demonstrate how an idea from tests of Bell’s inequality can serve the same cryptographic

1They also have some other caveats: a provable speedup of O(1) quantum complexity over O(n) classical
complexity is promising, but just reading the input may require O(n) time, hiding the computational speedup
in practice.

2“Claw-free” is often used to refer to a pair of functions f0, f1 such that for appropriate x0, x1 we have
f0(x0) = f1(x1). Here, we use the slightly more general idea of a single 2-to-1 function f for which it is hard
to find x0, x1 such that f(x0) = f(x1). This is a special case of a “collision-resistant function,” which could
potentially be many-to-one. We also note that a claw-free pair of functions can be converted into a single
claw-free function by defining f(b||x) = fb(x), where || denotes concatenation.

3To be precise, it is hard to find both x0 and the parity of any subset of the bits of x1.
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Figure 5.1: Schematic representation of the interactive quantum advantage pro-
tocol. In the first round of interaction, the classical verifier (right) selects a specific function
from a trapdoor claw-free family and the quantum prover (left) evaluates it over a super-
position of inputs. The goal of the second round is to condense the information contained
in the prover’s superposition state onto a single ancilla qubit. The final round of interac-
tion effectively performs a Bell inequality measurement, whose outcome is cryptographically
protected.
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purpose as the adaptive hardcore bit [127]. In essence, our interactive protocol is a variant
of the CHSH (Clauser, Horne, Shimony, Holt) game [128] in which one player is replaced
by a cryptographic construction. Normally, in CHSH, two quantum parties are asked to
produce correlations that would be impossible for classical devices to produce. If space-like
separation is enforced to rule out communication between the two parties, then the correla-
tions constitute a proof of quantumness. In our case, the space-like separation is replaced by
the computational hardness of a cryptographic problem. In particular, the quantum prover
holds a qubit whose state depends on the cryptographic secret in the same way that the state
of one CHSH player’s qubit depends on the secret measurement basis of the other player.
An alternative interpretation, from the perspective of Bell’s theorem, is that the protocol
can be thought of as a “single-detector Bell test”—the cryptographic task generates the same
single-qubit state as would be produced by entangling a second qubit and measuring it with
another detector. As in the CHSH game, a quantum device can pass the verifier’s test with
probability ∼ 85%, but a classical device can only succeed with probability at most 75%.
This finite gap in success probabilities is precisely what enables a verifiable test of quantum
advantage.

Second, by removing the need for an adaptive hardcore bit, our protocol accepts a broader
landscape of functions for interactive tests of quantum advantage (see Table 5.1 and Meth-
ods). We populate this list with two new constructions. The first is based on the deci-
sional Diffie-Hellman problem (DDH) [129]–[131]; the second utilizes the function fN(x) =
x2 mod N with N the product of two primes, which forms the backbone of the Rabin cryp-
tosystem [132], [133]. On the one hand, DDH is appealing because the elliptic-curve version
of the problem is particularly hard for classical computers [134]–[136]. On the other hand,
x2 mod N can be implemented significantly more efficiently, while its hardness is equivalent
to factoring. We hope that these two constructions will provide a foundation for the search
for more TCFs with desirable properties (small key size and efficient quantum circuits).

Third, we describe two innovations that facilitate our protocol’s use in practice: a way to
significantly reduce overhead arising from the reversibility requirement of quantum circuits,
and a scheme for increasing noisy devices’ probability of passing the test. Normally, quantum
implementations of classical functions like the TCFs used in this protocol have some overhead,
due to the need to make the circuit reversible in order to be consistent with unitarity [137]–
[141]. Our protocol exhibits the surprising property that it permits a measurement scheme to
discard so-called “garbage bits” that arise during the computation, allowing classical circuits
to be converted into quantum ones with essentially zero overhead. In the case of a noisy
quantum device, the protocol also enables an inherent post-selection scheme for detecting
and removing certain types of quantum errors. With this scheme it is possible for quantum
devices to trade off low quantum fidelities for an increase in the overall runtime, while still
passing the cryptographic test. We note that these constructions are likely applicable to
other TCF-based quantum cryptography protocols as well, and thus may be of independent
interest for tasks such as certifiable quantum random number generation.

Finally, focusing on the TCF x2 mod N , we provide explicit quantum circuits—both
asymptotically optimal (requiring only O(n log n) gates and O(n) qubits), as well as those
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Problem Trap
door

Claw-
free

Adaptive
hard-core

bit

Asymptotic
complexity
(gate count)

LWE [39] ✓ ✓ ✓ n2 log2 n

x2 mod N ✓ ✓ ✗ n log n

Ring-LWE [41] ✓ ✓ ✗ n log2 n

Diffie-Hellman ✓ ✓ ✗ n3 log2 n

Shor’s alg. — — — n2 log n

Table 5.1: Cryptographic constructions for interactive quantum advantage pro-
tocols. n represents the number of bits in the function’s input string. Big-O notation is
implied an d factors of log log n and smaller are dropped. For references and derivations of
the circuit complexities, see Section 5.7.6.

aimed for near-term quantum devices. We show that a verifiable test of quantum advantage
can be achieved with ∼ 103 qubits and a gate depth ∼ 105 (see Methods). We also co-
design a specific implementation of x2 mod N optimized for a programmable Rydberg-based
quantum computing platform. The native physical interaction corresponding to the Rydberg
blockade mechanism enables the direct implementation of multi-qubit-controlled arbitrary
phase rotations without the need to decompose such gates into universal two-qubit operations
[142]–[146]. Access to such a native gate immediately reduces the gate depth for achieving
quantum advantage by an order of magnitude.

5.2 Background and Related Work
The use of trapdoor claw-free functions for quantum cryptographic tasks was pioneered in
two recent breakthrough protocols: (i) giving classical homomorphic encryption for quantum
circuits [46] and (ii) for generating cryptographically certifiable quantum randomness from
an untrusted black-box device [39]; this latter work also introduced the notion of an adaptive
hardcore bit and serves as an efficiently verifiable test of quantum advantage. Remarkably,
the scheme was further extended to allow a classical server to cryptographically verify the
correctness of arbitrary quantum computations [47]; it has also been applied to remote state
preparation with implications for secure delegated computation [48].

Recently, an improvement to the practicality of TCF-based proofs of quantumness was
provided in the random oracle model (ROM)—a model of computation in which both the
quantum prover and classical verifier can query a third-party “oracle,” which returns a ran-
dom (but consistent) output for each input. In that work, the authors provide a protocol
that both removes the need for the adaptive hardcore bit, and also reduces the interaction
to a single round [41]. Because the security of the protocol is proven in the ROM, imple-
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menting this protocol in practice requires applying the random oracle heuristic, in which
the random oracle is replaced by a cryptographic hash function, but the hardness of classi-
cally defeating the protocol is taken to still hold 4. Only contrived cryptographic schemes
have ever been broken by attacking the random oracle heuristic [42], [43], so it seems to be
effective in practice and the ROM protocol has significant potential for use as a practical
tool for benchmarking untrusted quantum servers. On the other hand, for a robust exper-
imental test of the foundational complexity theoretic claims of quantum computing—that
quantum mechanics allows for algorithms that are superpolynomially faster than classical
Turing machines—we desire the complexity-theoretic backing of the speedup to be as strong
as possible (i.e. provable in the “standard model” of computation [22]), which is the goal
pursued in the present work. With that said, we emphasize that the various optimizations
described below—including the TCF families based on DDH and x2 mod N , as well as the
schemes for postselection and discarding garbage bits—can be applied to the ROM protocol
as well.

Lastly, we also note two recent works which demonstrate that any TCF-based proof of
quantumness, including the present work, can be implemented in constant quantum circuit
depth (at the cost of more qubits) [147], [148].

5.3 Interactive Protocol for Quantum Advantage
Our full protocol is shown diagrammatically in Figure 5.1. It consists of three rounds of in-
teraction between the prover and verifier (with a “round” being a challenge from the verifier,
followed by a response from the prover). The first round generates a multi-qubit superposi-
tion over two bit strings that would be cryptographically hard to compute classically. The
second round maps this superposition onto the state of one ancilla qubit, retaining enough
information to ensure that the resulting single-qubit state is also hard to compute classically.
The third round takes this single qubit as input to a CHSH-type measurement, allowing the
prover to generate a bit of data that is correlated with the cryptographic secret in a way
that would not be possible classically. Having described the intuition behind the protocol,
we now lay out each round in detail.

5.3.1 Description of the protocol

The goal of the first round is to generate a superposition over two colliding inputs to the
trapdoor claw-free function (TCF). It begins with the verifier choosing an instance fi of the
TCF along with the associated trapdoor data t; fi is sent to the prover. As an example,
in the case of x2 mod N , the “index” i is the modulus N , and the trapdoor data is its

4Replacing the random oracle with a hash function is termed a heuristic rather than an assumption
because the security of this procedure generally holds in practice but is not provable—in fact, there exist
constructions that are provably secure in the random oracle model but trivially insecure when instantiated
with a hash function [42].
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factorization, p, q. The prover now initializes two registers of qubits, which we denote as
the x and y registers. On these registers, they compute the entangled superposition |ψ⟩ =∑

x |x⟩x |fi(x)⟩y, over all x in the domain of fi. The prover then measures the y register in
the standard basis, collapsing the state to (|x0⟩+ |x1⟩)x |y⟩y, with y = f(x0) = f(x1). The
measured bitstring y is then sent to the verifier, who uses the secret trapdoor to compute x0
and x1 in full.

At this point, the verifier randomly chooses to either request a projective measurement
of the x register, ending the protocol, or to continue with the second and third rounds. In
the former case, the prover communicates the result of that measurement, yielding either x0
or x1, and the verifier checks that indeed f(x) = y. In the latter case, the protocol proceeds
with the final two rounds.

The second round of interaction converts the many-qubit superposition |ψ⟩ = |x0⟩x+|x1⟩x
into a single-qubit state {|0⟩b , |1⟩b , |+⟩b , |−⟩b} on an ancilla qubit b. The final state of b
depends on the values of both x0 and x1. The round begins with the verifier choosing a
random bitstring r of the same length as x0 and x1, and sending it to the prover. Using a
series of CNOT gates from the x register to b, the prover computes the state |r · x0⟩b |x0⟩x +
|r · x1⟩b |x1⟩x, where r · x denotes the binary inner product. Finally, the prover measures
the x register in the Hadamard basis, storing the result as a bitstring d which is sent to the
verifier. This measurement disentangles x from b without collapsing b’s superposition. At
the end of the second round, the prover’s state is (−1)d·x0 |r · x0⟩b + (−1)d·x1 |r · x1⟩b, which
is one of {|0⟩ , |1⟩ , |+⟩ , |−⟩}. Crucially, it is cryptographically hard to predict whether this
state is one of {|0⟩ , |1⟩} or {|+⟩ , |−⟩}.

The final round of our protocol can be understood in analogy to the CHSH game [128].
While the prover cannot extract the polarization axis from their single qubit (echoing the
no-signaling property of CHSH), they can make a measurement that is correlated with it.
This measurement outcome ultimately constitutes the proof of quantumness. In particular,
the verifier requests a measurement in an intermediate basis, rotated from the Z axis around
Y , by either θ = π/4 or −π/4. Because the measurement basis is never perpendicular to
the state, there will always be one outcome that is more likely than the other (specifically,
with probability cos2(π/8) ≈ 0.85). The verifier returns Accept if this “more likely” outcome
is the one received.

In the next section, we prove that a quantum device can cause the verifier to Accept with
substantially higher probability than any classical prover. A full test of quantum advantage
would consist of running the protocol many times, until it can be established with high
statistical confidence that the device has exceeded the classical probability bound.

5.3.2 Completeness and soundness

We now prove completeness (the noise-free quantum success probability) and soundness (an
upper bound on the classical success probability). Recall that after the first round of the
protocol, the verifier chooses to either request a standard basis measurement of the first
register, or to continue with the second and third rounds. In the proofs below, we analyze
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the prover’s success probability across these two cases separately. We denote the probability
that the verifier will accept the prover’s string x in the first case as px, and the probability
that the verifier will accept the single-qubit measurement result in the second case as pCHSH.

5.3.2.1 Perfect quantum prover (completeness)

Theorem 2. An error-free quantum device honestly following the interactive protocol will
cause the verifier to return Accept with px = 1 and pCHSH = cos2 (π/8) ≈ 0.85.

Proof. If the verifier chooses to request a projective measurement of x after the first round,
an honest quantum prover succeeds with probability px = 1 by inspection.

If the verifier chooses to instead perform the rest of the protocol, the prover will hold one
of {|0⟩ , |1⟩ , |+⟩ , |−⟩} after round 2. In either measurement basis the verifier may request
in round 3, there will be one outcome that occurs with probability cos2 (π/8), which is by
construction the one the verifier accepts. Thus, an honest quantum prover has pCHSH =
cos2(π/8) ≈ 0.85.

5.3.2.2 Classical prover (soundness)

Theorem 3. Assume the function family used in the interactive protocol is claw-free. Then,
px and pCHSH for any classical prover must obey the relation

px + 4pCHSH − 4 < ϵ(n) (5.1)

where ϵ is a negligible function of n, the length of the function family’s input strings.

Proof. We prove by contradiction. Assume that there exists a classical machine A for which
px + 4pCHSH − 4 ≥ µ(n), for a non-negligible function µ. We show that there exists another
algorithm B that uses A as a subroutine to find a pair of colliding inputs to the claw-free
function, a contradiction.

Given a claw-free function instance fi, B acts as a simulated verifier for A. B begins by
supplying fi to A, after which A returns a value y, completing the first round of interaction.
B now chooses to request the projective measurement of the x register, and stores the result
as x0. Letting px0 be the probability that x0 is a valid preimage, by definition of px we have
px0 = px.

Next, B rewinds the execution of A, to its state before x0 was requested. Crucially,
rewinding is possible because A is a classical algorithm. B now proceeds by running A
through the second and third rounds of the protocol for many different values of the bitstring
r (Fig. 1), rewinding each time.

We now show that, for r selected uniformly at random, B can extract the value of the
inner product r · x1 with probability pr·x1 ≥ 1 − 2(1 − pCHSH). B begins by sending r
to A, and receiving the bitstring d. B then requests the measurement result in both the
θ = π/4 and θ = −π/4 bases, by rewinding in between. Supposing that both the received
values are “correct” (i.e. would be accepted by the real verifier), they uniquely determine
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the single-qubit state |ψ⟩ ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩} that would be held by an honest quantum
prover. This state reveals whether r · x0 = r · x1, and because B already holds x0, B can
compute r · x1. We may define the probability (taken over all randomness except the choice
of θ) that the prover returns an accepting value in the cases θ = π/4 and θ = −π/4 as pπ/4
and p−π/4 respectively. Then, via union bound, the probability that both are indeed correct
is pr·x1 ≥ 1 − (1 − pπ/4) − (1 − p−π/4). Considering that pCHSH = (pπ/4 + p−π/4)/2, we have
pr·x1 ≥ 1− 2(1− pCHSH).

Now, we show that extracting r ·x1 in this way allows x1 to be determined in full even in
the presence of noise, by rewinding many times and querying for specific (correlated) choices
of r. In particular, the above construction is a noisy oracle to the encoding of x1 under the
Hadamard code. By the Goldreich-Levin theorem [149], list decoding applied to such an
oracle will generate a polynomial-length list of candidates for x1. If the noise rate of the
oracle is noticeably less than 1/2, x1 will be contained in that list; B can iterate through the
candidates until it finds one for which f(x1) = y.

By Lemma 1 in the Methods, for a particular iteration of the protocol, the probability
that list decoding succeeds is bounded by px1 > 2pr·x1 − 1− 2µ′(n), for a noticeable function
µ′(n) of our choice 5. Setting µ′(n) = µ(n)/4 and combining with the previous result yields
px1 > 1− 4(1− pCHSH)− µ(n)/2.

Finally, via union bound, the probability that B returns a claw is

PB ≥ 1− (1− px0)− (1− px1) > px + 4pCHSH − 4− µ(n)/2

and via the assumption that px + 4pCHSH − 4 > µ(n) we have

PB > µ(n)/2

a contradiction.

If we let px = 1, the bound requires that pCHSH < 3/4 + ϵ(n) for a classical device, while
pCHSH ≈ 0.85 for a quantum device, matching the classical and quantum success probabilities
of the CHSH game. In Section 5.7.7, we provide an example of a classical algorithm saturating
the bound with px = 1 and pCHSH = 3/4.

5.3.3 Variations on the protocol

In this section we describe two variations on the protocol, the goal of both of which is to
remove the need for the “preimage” test (Step 6a of Fig. 5.1). The main benefit of doing
so is that it simplifies and improves the classical bound, to simply p ≤ 3/4 + ϵ(n), where p
now is the overall probability that the prover succeeds (equivalent to pCHSH in the normal

5The oracle’s noise rate is not simply pr·x1
: that is the probability that any single value r · x1 is correct,

but all of the queries to the oracle are correlated (they are for the same iteration of the protocol, and thus
the same value of y).
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protocol, because px no longer exists). A secondary benefit is that it slightly simplifies the
experimental implementation by making the protocol less complicated.

The idea is simple: in Step 6b of Fig. 5.1, instead of choosing a single random bitstring r,
the verifier chooses two, r0 and r1. Then, in Step 7b, instead of using the single r for both x0
and x1, the prover instead computes |r0 · x0⟩b |x0⟩x+|r1 · x1⟩b |x1⟩x—a different inner product
for each of the preimages. Applying the proof of Theorem 3 to this scheme, the responses of
the classical machine A can be used to reconstruct whether r0 ·x0 = r1 ·x1 (where originally
we reconstructed simply whether r · x0 = r · x1). The key insight is that the truth value of
this new equality is equal to (r0||r1) · (x0||x1), where || denote concatenation. This fact can
be used to construct a noisy oracle for the inner product of x0||x1 with arbitrary strings, to
which the Goldreich-Levin theorem can be applied to find x0||x1, fully revealing both x0 and
x1. (This should be compared to the original proof, which could only decode x0⊕ x1 via the
Goldreich-Levin theorem, and thus required the preimage test to supply x0 or x1 and thus
reveal the claw). Since x0 and x1 can both be reconstructed from only the CHSH portion of
the protocol, the “preimage” test is not necessary for classical hardness and can be removed.

The downside of this variation of the protocol is that the prover needs to somehow be
able to distinguish x0 from x1, so that the appropriate inner product can be taken with each.
For many TCFs, such as the one based on LWE [39] and the DDH-based TCF we present in
this chapter, this is not a problem—there is an extra qubit in the preimages which is in the
state |0⟩ for x0 and |1⟩ for x1. However for x2 mod N , it is not so straightforward. Via the
Jacobi symbol it is technically possible to distinguish the two preimages, because it is a fact of
x2 mod N that one preimage will have Jacobi symbol +1 and the other −1. However actually
computing the Jacobi symbol is very expensive, much moreso than computing x2 mod N
itself, defeating our goal of having an efficient implementation! Another somewhat less
expensive strategy is to switch to the pair of functions f0(x) = x2 mod N and f1(x) =
4x2 mod N , with their domain defined as the set of quadratic residues less than N (instead
of the set of integers [0, N/2] that were used before). By splitting into two functions we get
the desired “marker” qubit distinguishing the two preimages, but we run into the problem of
generating a uniform superposition of quadratic residues modulo N . To our knowledge the
best way to generate such a superposition is to start with the set of all integers less than N ,
and square them. Then, another square must be taken to actually implement the TCF. So,
it seems that using this TCF would require a quantum circuit twice as large as the original
protocol using x2 mod N—a tradeoff that is probably not worth it for the extra simplicity
of removing the preimage test. That being said, if a function other than x2 mod N is used
which does have the extra qubit, this variation is almost certainly the right choice.

We also note that we learned via personal correspondence with Eitan Porat, Zvika Brak-
erski, and Thomas Vidick that they found that the original protocol is actually classically
hard without the preimage test. The intuitive idea is that we can learn more information
from the “measurement results” than just whether r · x0 = r · x1. In particular, when that
equality holds, we also get access to the value of r · x0 (and r · x1, since they are equal).
With this extra information it is possible to use a more complicated scheme based on the
Goldreich-Levin theorem to decode x0 and x1 in full, proving the hardness of passing just the
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CHSH portion directly from the hardness of finding claws. However, apparently the classical
bound is not quite as powerful due to the more complicated decoding process.

5.3.4 Robustness: Error mitigation via postselection

The existence of a finite gap between the classical and quantum success probabilities implies
that our protocol can tolerate a certain amount of noise. A direct implementation of our
interactive protocol on a noisy quantum device would require an overall fidelity of ∼ 83% in
order to exceed the classical bound 6. To allow devices with lower fidelities to demonstrate
quantum advantage, our protocol allows for a natural tradeoff between fidelity and runtime,
such that the classical bound can, in principle, be exceeded with only a small [e.g. 1/poly(n)]
amount of coherence in the quantum device 7.

The key idea is based upon postselection. For most TCFs, there are many bitstrings of
the correct length that are not valid outputs of f . Thus, if the prover detects such a y value
in step 3 (Fig. 1), they can simply discard it and try again 8. In principle, the verifier can
even use their trapdoor data to silently detect and discard iterations of the protocol with
invalid y 9. Since y is a function of x0 and x1, one might hope that this postselection scheme
also rejects states where x0 or x1 has become corrupt. Although this may not always be the
case, we demonstrate numerically that this assumption holds for a specific implementation
of x2 mod N in the following subsection. One could also compute a classical checksum of
x0 and x1 before and after the main circuit to ensure that they have not changed during its
execution. Assuming that such bit-flip errors are indeed rejected, the possibility remains of
an error in the phase between |x0⟩ and |x1⟩. In Section 5.7.9, we demonstrate that a prover
holding the correct bitstrings but with an error in the phase can still saturate the classical
bound; if the prover can avoid phase errors even a small fraction of the time, they will push
past the classical threshold.

5.3.4.1 Numerical analysis of the postselection scheme for x2 mod N

Focusing on the function f(x) = x2 mod N , we now explicitly analyze the effectiveness of
the postselection scheme. Let m be the length of the outputs of this function. In this case,

6This number comes from solving the classical bound (Equation 5.1) for circuit fidelity F , with px = F
and pCHSH = 1/2 + F/2.

7This is true even if the coherence is exponentially small in n. Of course, with arbitrarily low coherence
the runtime may become excessively large such that quantum advantage cannot be demonstrated—the point
is that regardless of runtime, the classical probability bound can be exceeded with a device that has arbitrarily
low circuit fidelity.

8This scheme will only remove errors in the first round of the protocol, but fortunately, one expects the
overwhelming majority of the quantum computation, and thus also the majority of errors, to occur in that
round.

9This procedure does not leak data to a classical cheater, because the verifier does not communicate which
runs were discarded. Furthermore, it does not affect the soundness of Theorem 3, because the machine B in
that theorem’s proof can simply iterate until it encounters a valid y.
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Figure 5.2: Performance of our post-selection scheme. Redundancy is added to the
function x2 mod N by mapping it to (3ax)2 mod 32aN . Numerical simulations are performed
on a quantum circuit implementing the Karatsuba algorithm for a = {0, 1, 2, 3} (see Sec-
tion 5.7.9). (a) “Quantumness” measured in terms of the classical bound from Eqn. 5.1 as
a function of the total circuit fidelity. With a = 3, even a quantum device with only 1%
circuit fidelity can demonstrate quantum advantage. (b) Depicts the increased runtime as-
sociated the post-selection scheme, which arises from a combination of slightly larger circuit
sizes and the need to re-run the circuit multiple times. The latter is by far the dominant
effect. Dashed lines are a theory prediction with no fit parameters; points are the result of
numerical simulations at n = 512 bits and error bars depict 2σ uncertainty.
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approximately 1/4 of the bitstrings of length m are valid outputs, so one would naively
expect to reject about 3/4 of corrupted bitstrings. By introducing additional redundancy
into the outputs of f and thus increasing m, one can further decrease the probability that a
corrupted y will incorrectly be accepted. As an example, let us consider mapping x2 mod N
to the function (kx)2 mod k2N for some integer k. This is particularly convenient because
the prover can validate y by simply checking whether it is a multiple of k2. Moreover, the
mapping adds only log k bits to the size of the problem, while rejecting a fraction 1− 1/k2

of corrupted bitstrings.
We perform extensive numerical simulations demonstrating that postselection allows for

quantum advantage to be achieved using noisy devices with low circuit fidelities (Fig. 2). We
simulate quantum circuits for (kx)2 mod k2N at a problem size of n = 512 bits. Assuming
a uniform gate fidelity across the circuit, we analyze the success rate of a quantum prover
for k = 3a and a = {0, 1, 2, 3}. For these simulations we use our implementation of the
Karatsuba algorithm (see Section 5.5.1) because it is the most efficient in terms of gate
count and depth. The choice of k = 3a, and details of the simulation, are explained in
Section 5.7.9.

For a = 0, the circuit implements our original function x2 mod N , where in the absence of
postselection, an overall circuit fidelity of F ∼ 0.83 is required to achieve quantum advantage.
As depicted in Fig. 5.2(a), even for a = 0, our postselection scheme improves the advantage
threshold down to F ∼ 0.51. For a = 2, circuit fidelities with F ≳ 0.1 remain well above the
quantum advantage threshold, while for a = 3 the required circuit fidelity drops below 1%.

However, there is a tradeoff. In particular, one expects the overall runtime to increase
for two reasons: (i) there will be a slight increase in the circuit size for a > 0 and (ii) one
may need to re-run the quantum circuit many times until a valid y is measured. Some-
what remarkably, a runtime overhead of only 4.7x already enables quantum advantage to
be achieved with an overall circuit fidelity of 10% [Fig. 5.2(b)]. Crucially, this increase in
runtime is overwhelmingly due to re-running the quantum circuit and does not imply the
need for longer experimental coherence times.

5.3.5 Efficient quantum evaluation of irreversible classical circuits

The central computational step in our interactive protocol (i.e. step 2, Fig. 5.1) is for the
prover to apply a unitary of the form:

Ufi
∑
x

|x⟩x |0⊗m⟩y =
∑
x

|x⟩x |fi(x)⟩y , (5.2)

where fi(x) is a classical function and m is the length of the output register. This type of
unitary operation is ubiquitous across quantum algorithms, and a common strategy for its
implementation is to convert the gates of a classical circuit into quantum gates. Generically,
this process induces substantial overhead in both time and space complexity owing to the
need to make the circuit reversible to preserve unitarity [137], [138]. This reversibility is often
achieved by using an additional register, g, of so-called “garbage bits” and implementing:
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U ′
fi

∑
x |x⟩x |0⊗m⟩y |0⊗l⟩g =

∑
x |x⟩x |fi(x)⟩y |gi(x)⟩g. For each gate in the classical circuit,

enough garbage bits are added to make the operation injective. In general, to maintain
coherence, these bits cannot be discarded but must be “uncomputed” later, adding significant
complexity to the circuits.

A particularly appealing feature of our protocol is the existence of a measurement scheme
to discard garbage bits, allowing for the direct mapping of classical to quantum circuits with
no overhead. Specifically, we envision the prover measuring the qubits of the g register in
the Hadamard basis and storing the results as a bitstring h, yielding the state,

|ψ⟩ =
∑
x

(−1)h·gi(x) |x⟩x |fi(x)⟩y . (5.3)

The prover has avoided the need to do any uncomputation of the garbage bits, at the expense
of introducing phase flips onto some elements of the superposition. These phase flips do not
affect the protocol, so long as the verifier can determine them. While classically computing
h · gi(x) is efficient for any x, computing it for all terms in the superposition is infeasible
for the verifier. However, our protocol provides a natural way around this. The verifier can
wait until the prover has collapsed the superposition onto x0 and x1, before evaluating gi(x)
only on those two inputs 10.

Crucially, the prover can measure away garbage qubits as soon as they would be discarded
classically, instead of waiting until the computation has completed. If these qubits are then
reused, the quantum circuit will use no more space than the classical one. This feature
allows for significant improvements in both gate depth and qubit number for practical im-
plementations of the protocol (see last rows of Table I in Methods). We note that performing
many individual measurements on a subset of the qubits is difficult on some experimental
systems, which may make this technique challenging to use in practice. However, recent
hardware advances have demonstrated these “intermediate measurements” in practice with
high fidelity, for example by spatially shuttling trapped ions [150], [151]. We thus expect
that the capability to perform partial measurements will not be a barrier in the near term.
This issue can also be mitigated somewhat by collecting ancilla qubits and measuring them
in batches rather than one-by-one, allowing for a direct trade-off between ancilla usage and
the number of partial measurements.

5.4 The search for alternative trapdoor claw-free
functions

Before moving on to proposals for the physical implementation of this protocol, I would like
to briefly summarize some of my unsuccessful efforts to find new constructions for trapdoor
claw-free functions, in hope that it can be helpful for anyone trying to do so in the future.

10This is true because gi(x) is the result of adding extra output bits to the gates of a classical circuit,
which is efficient to evaluate on any input.
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Broadly, the goal is to come up with a TCF that can be implemented in as small a quantum
circuit as possible—primarily in terms of number of qubits and number of gates. Other
potentially important statistics include circuit depth (parallelism) and spatial locality of the
gates.

We will focus on the x2 mod N -based TCF in the later sections of this chapter because
it seems to strike the best balance in achieving the goals above, but it is not perfect because
the modulus N needs to be quite large for the problem to be classically hard—which has
negative consequences for both the qubit and gate counts. For example, considering just
qubit count for the moment, if we desire the security of a 1024-bit modulus, there is a hard
lower bound of 1024 qubits required to implement the circuit (and in practice, the circuit
will probably require a considerable amount more than that). This should be compared to
the fact that in the average case, circuits of fewer than 100 qubits with sufficient depth are
infeasible to classically simulate—so there is a large gap between the hardness of simulation
and the hardness of the cryptography. Ideally, we would make that gap as small as possible.
The DDH-based TCF also proposed in this chapter has the potential to improve the gap
considerably: when implemented using elliptic curve cryptography, the group elements can
be as small as a couple hundred bits long and the hardness assumption remains secure.
Unfortunately, the gate count required to implement that TCF is dramatically worse than
for x2 mod N , and that is why we do not focus our efforts on building circuits for it.

Given these considerations, I expended a considerable effort in looking for other cryp-
tographic assumptions that could be used to build a trapdoor claw-free function. Coming
up with new, more efficient TCFs directly from the ground up is a daunting pursuit: find-
ing ways to make public-key cryptography more efficient is of central concern for classical
cryptography, so it has been a subject of intense research for years. So instead of trying to
break new ground there, a more modest goal is to take other existing schemes for public-key
cryptography which do not have the precise structure of a TCF, and build TCFs out of them.

In my efforts to do so, one promising candidate seemed to be the Learning Parity with
Noise (LPN) problem, which has found use for classical cryptography in devices with very
limited computational power such as RFID cards. The structure of the LPN problem is
similar to that of LWE, but the linear algebra takes place over the field F2 of binary numbers
instead of integers modulo some large q. [152] To be explicit, consider a binary matrix
A ∈ {0, 1}m×n, with, say, m = 2n. For a secret string s ∈ {0, 1}n and “error” vector
e ∈ {0, 1}m, consider the “noisy” image of s defined as y = As + e. The LPN hardness
assumption states that for appropriate setting of the problem parameters, given only y and
A it is computationally hard (even for a quantum computer) to recover s unless A has some
special structure.11 Obviously this is the case if the noise vector e is overwhelming; the
problem is interesting because this seems to hold even when e is quite sparse (most entries

11When I first learned about LPN I got extremely interested in exploring the classical hardness of the
problem. I wrote the first (to my knowledge) GPU-accelerated solver for it, and ended up breaking the world
record for the largest instance that had been solved. After about a year I was unseated by another GPU-
based implementation. The competition can be found here: https://decodingchallenge.org/syndrome,
I encourage the reader to try their hand at it!

https://decodingchallenge.org/syndrome
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are zero). One can see the potential here for simplicity of implementation: performing the
linear algebra requires only addition and multiplication of numbers in F2, which corresponds
simply to XOR and AND gates. This is dramatically less complicated than the addition
and multiplication circuits for integers modulo some large value q, which are required to
implement LWE.

The challenge is to figure out how to build a TCF out of this hardness assumption.
Considering the similarity of the LWE and LPN problems, an obvious idea is to follow the
structure of the LWE TCF, and define two functions roughly as

f0(x) =Ax (5.4)
f1(x) =Ax+ y (5.5)

Using the definition of y, we see that f1(x) = A(x+ s) + e, and thus that for a pair (x0, x1)
where x0 = x1 + s, we have f0(x0) = f1(x1) + e—that is, it is almost a claw, aside from
the error vector e (which has most entries set to zero). But for the protocol to work, we
need an exact collision, rather than an approximate one. In LWE, this is done by adding
extra error e′ to the output of both f0 and f1, to “smear out” the values. If the distribution
of e′ is sufficiently wider than the distribution of e, then e disappears into the noise and
the probability distributions have good overlap, yielding collisions. Unfortunately, despite
considerable effort, it does not seem that it is possible to do the same trick with LPN. The
problem stems from the same reason that LPN seemed promising: the linear algebra is over
F2 instead of Fq. Intuitively, because each value can only be 0 or 1, there is simply no “room”
to have a wider probability distribution for the elements of an extra noise vector e′. (In fact,
the LWE TCF requires q to be very large precisely for this reason). Perhaps there is some
other scheme to create exact collisions from these near-collisions in LPN, like rounding the
outputs somehow, but I was never able to find one.

Looking at the problem more broadly, it actually seems very unlikely that it is possible to
create perfect collisions in this way, because it turns out doing so would break the assumption
of post-quantum hardness of LPN, which is widely believed to hold. The reason is because
this pair of functions could be used as an oracle for Simon’s algorithm, which would allow
a quantum device to very efficiently find s. [153] The only hope seems to be the fact that
Simon’s algorithm requires the functions to perfectly collide all but an exponentially small
fraction of the time, so perhaps if the collisions are not perfect, the LPN assumption would
not be broken. However, even broadening the search to look for such “noisy” TCFs based on
LPN has yet to yield any useful constructions. One last idea is that maybe there is a way to
use LPN in an entirely different manner to create a TCF—but for that, it’s not even clear
where to start.

5.5 Quantum circuits for trapdoor claw-free functions
As just discussed, while all of the trapdoor, claw-free functions listed in Table 5.1 can be
utilized within our interactive protocol, each has its own set of advantages and disadvantages.
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Figure 5.3: Quantum circuits implementing step 2 of our interactive protocol
for f(x) = x2 mod N . n is the length of the input register, and m = n + O(1) is the
length of the output register. (a) Depicts a quantum circuit optimized for qubit number.
The circuit shown computes the kth bit of w = x2/N and should be iterated for k. This
iteration should begin at the least significant bit to ensure that the final phase rotation
can be estimated classically. Note that the only entangling operations necessary for the
circuit are doubly-controlled gates, which can be natively implemented using the Rydberg
blockade (see Section 5.5.3). (b) Depicts a quantum circuit optimized for gate number. By
combining gates of equal phase, one can reduce the overall circuit complexity to O(n2 log n)
gates. We note that neither circuit requires use of the “garbage bit” procedure described in
Section 5.3.5; this design choice reduces measurement complexity. If desired, that procedure
could be applied to the counter register of circuit (b) in place of the controlled-decrement
operation.
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For example, the TCF based on the Diffie-Hellman problem (described in the Methods)
already enables a demonstration of quantum advantage at a key size of 160 bits (with a
hardness equivalent to 1024 bit integer factorization [136]); however, building a circuit for this
TCF requires a quantum implementation of Euclid’s algorithm, which is challenging [154].
Thus, we focus on designing quantum circuits implementing Rabin’s function, x2 mod N .

5.5.1 Quantum circuits for x2 mod N

In Chapter 7 we present what to our knowledge are the most highly optimized circuits known
for x2 mod N . Here, we present four more basic circuits, that exhibit the range of possible
implementations of x2 mod N and provide a good comparison for the optimizations in that
chapter. For the circuits presented here, implementations in Python using the Cirq library
are included as supplementary files 12. The first two are quantum implementations of classical
circuits for the Karatsuba and “schoolbook” classical integer multiplication algorithms, where
we leverage the reversibility optimizations described in Section 5.3.5 (see Section 5.7.8 for
details of their implementation). The latter pair, which we call the “phase circuits” and
describe below, are intrinsically quantum algorithms that use Ising interactions to directly
compute x2 mod N in the phase. Using those circuits, we propose a near-term demonstration
of our interactive protocol on a Rydberg-based quantum computer [143], [146]; crucially,
the so-called “Rydberg blockade” interaction natively realizes multi-qubit controlled phase
rotations, from which the entire circuits shown in Figure 3 are built (up to single qubit
rotations). A comparison of approximate gate counts for each of the four circuits can be
seen in Table I in the Methods. Of the circuits explored here, the Karatsuba algorithm is
the most efficient in total gates and circuit depth, while the phase circuits are most efficient
in terms of qubit usage and measurement complexity. Chapter 7 manages to combine the
benefits of both, yielding circuits with gate counts better than the Karatsuba circuits here
and qubit usage and measurement complexity comparable to the phase circuits.

5.5.2 Phase circuits

We now describe the two circuits, amenable to near-term quantum devices, that utilize
quantum phase estimation to implement the function f(x) = x2 mod N . The intuition
behind our approach is as follows: we will compute x2/N in the phase and transfer it to an
output register via an inverse quantum Fourier transform [156], [157]; the modulo operation
occurs automatically as the phase wraps around the unit circle, avoiding the need for a
separate reduction step.

In order to implement
∑

x |x⟩x |x2 mod N⟩y, we design a circuit to compute:

(I⊗ IQFT) ŨwN
(I⊗ H⊗m) |x⟩ |0⊗m⟩ = |x⟩ |w⟩ (5.6)

12Code is available at https://github.com/GregDMeyer/quantum-advantage and is archived on Zen-
odo [155]

https://github.com/GregDMeyer/quantum-advantage
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where H is a Hadamard gate, IQFT represents an inverse quantum Fourier transform, w ≡
x2/N = 0.w1w2 · · ·wm is an m-bit binary fraction 13, and ŨwN

is the diagonal unitary,

ŨwN
|x⟩ |z⟩ = exp

(
2πi

x2

N
z

)
|x⟩ |z⟩ . (5.7)

The simplest circuit to implement ŨwN
simply decomposese x and z in binary, and performs

a digit-by-digit multiplication using the schoolbook algorithm:

exp

(
2πi

x2

N
z

)
=
∏
i,j,k

exp

(
2πi

2i+j+k

N
xixjzk

)
, (5.8)

With this, one immediately finds that ŨwN
is equivalent to applying a series of controlled-

controlled-phase rotation gates of angle,

ϕijk =
2π2i+j+k

N
(mod 2π). (5.9)

Here, the control qubits are i, j in the x register, while the target qubit is k in the y register.
Crucially, the value of this phase for any i, j, k can be computed classically when the circuit
is compiled.

Figure 5.3 shows two explicit circuits to implement ŨwN
, one optimizing for qubit count,

and the other optimizing for gate count. The first circuit [Fig. 5.3(a)] takes advantage of the
fact that the output register is measured immediately after it is computed; this allows one
to replace the m output qubits with a single qubit that is measured and reused m times.
Moreover, by replacing groups of doubly-controlled gates with a Toffoli and a series of singly-
controlled gates, one ultimately arrives at an implementation, which requires n3/2 +O(n2)
gates, but only n+O(1) qubits. We note that this does require individual measurement and
re-use of qubits, which has been a challenge for experiments; recent experiments however
have demonstrated this capability [150], [151].

The second circuit [Fig. 5.3(b)], which optimizes for gate count, leverages the fact that
ϕijk (Eqn. 5.9) only depends on i + j + k, allowing one to combine gates with a common
sum. In this case, one can define ℓ = i+ j and then, for each value of ℓ, simply “count” the
number of values of i, j for which both control qubits are 1. By then performing controlled
gates off of the qubits of the counter register, one can reduce the total gate complexity by a
factor of n/ log n, leading to a implementation with 2n2 log n+O(n2) gates.

5.5.3 Experimental implementation

Motivated by recent advances in the creation and control of many-body entanglement in pro-
grammable quantum systems [32], [158]–[160], we propose an experimental implementation of

13We must take m > n+O(1) to sufficiently resolve the value x2 mod N in post-processing
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(a)
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<latexit sha1_base64="93InZTOWerdDM3X3VL7+JjTSozg=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoseCF48V7Ie0oWy2k3bpZhN2N0KJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHst7M0nQj+hQ8pAzaqz08KR6isqhwH654tbcOcgq8XJSgRyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n84Ck5s8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrz2My6T1KBki0VhKoiJyex7MuAKmRETSyhT3N5K2IgqyozNqGRD8JZfXiWt85p3WXPvLir1ah5HEU7gFKrgwRXU4RYa0AQGETzDK7w5ynlx3p2PRWvByWeO4Q+czx8UjpCB</latexit>|ri

<latexit sha1_base64="26iMeVMq4rGN9vvDHVSom6InFIg=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoseCF48V7Ie0oWy2k3bpZhN2N0KJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHst7M0nQj+hQ8pAzaqz08OT2FJVDgf1yxa25c5BV4uWkAjka/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5wVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjtZ1wmqUHJFovCVBATk9n3ZMAVMiMmllCmuL2VsBFVlBmbUcmG4C2/vEpa5zXvsubeXVTq1TyOIpzAKVTBgyuowy00oAkMIniGV3hzlPPivDsfi9aCk88cwx84nz+uqZA/</latexit>|0i

<latexit sha1_base64="i3kJPkC2lFQDyEZO8eEm9ibjBoQ=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoseCF48V7Ie0oWy2k3bpZhN2N0KJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHst7M0nQj+hQ8pAzaqz08OT1FJVDgf1yxa25c5BV4uWkAjka/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5wVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjtZ1wmqUHJFovCVBATk9n3ZMAVMiMmllCmuL2VsBFVlBmbUcmG4C2/vEpa5zXvsubeXVTq1TyOIpzAKVTBgyuowy00oAkMIniGV3hzlPPivDsfi9aCk88cwx84nz+wNJBA</latexit>|1i

<latexit sha1_base64="93InZTOWerdDM3X3VL7+JjTSozg=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoseCF48V7Ie0oWy2k3bpZhN2N0KJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHst7M0nQj+hQ8pAzaqz08KR6isqhwH654tbcOcgq8XJSgRyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n84Ck5s8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrz2My6T1KBki0VhKoiJyex7MuAKmRETSyhT3N5K2IgqyozNqGRD8JZfXiWt85p3WXPvLir1ah5HEU7gFKrgwRXU4RYa0AQGETzDK7w5ynlx3p2PRWvByWeO4Q+czx8UjpCB</latexit>|ri

(b)

(c) (d)

Figure 5.4: Physical implementation in a Rydberg atom quantum computer. (a)
Schematic illustration of a three dimensional array of neutral atoms with Rydberg blockade
interactions. The blockade radius can be significantly larger than the inter-atom spacing,
enabling multi-qubit entangling operations. (b) As an example, Rydberg atoms can be
trapped in an optical tweezer array. The presence of an atom in a Rydberg excited state
(red) shifts the energy levels of nearby atoms (blue), preventing the driving field (yellow
arrow) from exciting them to their Rydberg state, |r⟩. (c) A single qubit phase rotation
can be implemented by an off-resonant Rabi oscillation between one of the qubit states,
e.g., |1⟩, and the Rydberg excited state. This imprints a tunable, geometric phase ϕ, which
is determined by the detuning ∆ and Rabi frequency Ω. (d) Multi-qubit controlled-phase
rotations are implemented via a sequence of π-pulses between the |0⟩ ↔ |r⟩ transition of
control atoms (yellow) and off-resonant Rabi oscillations on the target atoms (orange).

our interactive protocol based upon neutral atoms coupled to Rydberg states [146]. We envi-
sion a three dimensional system of either alkali or alkaline-earth atoms trapped in an optical
lattice or optical tweezer array [Fig. 5.4(a)] [161]–[163]. To be specific, we consider 87Rb with
an effective qubit degree of freedom encoded in hyperfine states: |0⟩ = |F = 1,mF = 0⟩ and
|1⟩ = |F = 2,mF = 0⟩. Gates between atoms are mediated by coupling to a highly-excited
Rydberg state |r⟩, whose large polarizability leads to strong van der Waals interactions. This
microscopic interaction enables the so-called Rydberg “blockade” mechanism—when a single
atom is driven to its Rydberg state, all other atoms within a blockade radius, Rb, become
off-resonant from the drive, thereby suppressing their excitation [Fig. 5.4(a,b)] [142].

Somewhat remarkably, this blockade interaction enables the native implementation of all
multi-qubit-controlled phase gates depicted in the circuits in Figure 5.3. In particular, con-
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sider the goal of applying a CkRℓ
ϕ gate; this gate applies phase rotations, {ϕ1, ϕ2, . . . , ϕℓ}, to

target qubits {j1, j2, . . . jℓ} if all k control qubits {i1, i2, . . . ik} are in the |1⟩ state [Fig. 5.4(d)].
Experimentally, this can be implemented as follows: (i) sequentially apply (in any order) res-
onant π-pulses on the |0⟩ ↔ |r⟩ transition for the k desired control atoms, (ii) off-resonantly
drive the |1⟩ ↔ |r⟩ transition of each target atom with detuning ∆ and Rabi frequency Ω for
a time duration T = 2π/(Ω2 + ∆2)1/2 [Fig. 5.4(c)], (iii) sequentially apply [in the opposite
order as in (i)] resonant −π-pulses (i.e. π-pulses with the opposite phase) to the k control
atoms to bring them back to their original state. The intuition for why this experimental
sequence implements the CkRℓ

ϕ gate is straightforward. The first step creates a blockade
if any of the control qubits are in the |0⟩ state, while the second step imprints a phase,
ϕ = π(1 − ∆/

√
∆2 + Ω2), on the |1⟩ state, only in the absence of a blockade. Note that

tuning the values of ϕi for each of the target qubits simply corresponds to adjusting the
detuning and Rabi frequency of the off-resonant drive in the second step [Fig. 5.4(c,d)].

Demonstrations of our protocol can already be implemented in current generation Ryd-
berg experiments, where a number of essential features have recently been shown, including:
1) the coherent manipulation of individual qubits trapped in a 3D tweezer array [161], [162],
2) the deterministic loading of atoms in a 3D optical lattice [163], and 3) fast entangling
gate operations with fidelities, F ≥ 0.974 [143]–[145]. In order to estimate the number of
entangling gates achievable within decoherence time scales, let us imagine choosing a Ryd-
berg state with a principal quantum number n ≈ 70. This yields a strong van der Waals
interaction, V (r⃗) = C6/r

6, with a C6 coefficient ∼ (2π) 880 GHz·µm6 [164]. Combined with
a coherent driving field of Rabi frequency Ω ∼ (2π) 1− 10 MHz, the van der Waals interac-
tion can lead to a blockade radius of up to, Rb = (C6/Ω)

1/6 ∼ 10µm. Within this radius,
one can arrange ∼ 102 all-to-all interacting qubits, assuming an atom-to-atom spacing of
approximately, a0 ≈ 2µm 14. In current experiments, the decoherence associated with the
Rydberg transition is typically limited by a combination of inhomogeneous Doppler shifts
and laser phase/intensity noise, leading to 1/T2 ∼ 10 − 100 kHz [143], [165], [166]. Taking
everything together, one should be able to perform ∼ 103 entangling gates before deco-
herence occurs (this is comparable to the number of two-qubit entangling gates possible in
other state-of-the-art platforms [32], [167]). While this falls short of enabling an immediate
full-scale demonstration of classically verifiable quantum advantage, we hasten to emphasize
that the ability to directly perform multi-qubit entangling operations significantly reduces
the cost of implementing our interactive protocol. For example, the standard decomposition
of a Toffoli gate uses 6 CNOT gates and 7 T and T † gates, with a gate depth of 12 [168]–[170];
an equivalent three qubit gate can be performed in a single step via the Rydberg blockade
mechanism.

14We note that this spacing is ultimately limited by a combination of the optical diffraction limit and the
orbital size of n ≈ 70 Rydberg states.
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5.6 Conclusion and outlook
The interplay between classical and quantum complexities ultimately determines the thresh-
old for any quantum advantage scheme. Here, we have proposed a novel interactive protocol
for classically verifiable quantum advantage based upon trapdoor claw-free functions; in ad-
dition to proposing two new TCFs [Table 5.1], we also provide explicit quantum circuits
that leverage the microscopic interactions present in a Rydberg-based quantum computer.
Our work allows near-term quantum devices to move one step closer toward a loophole-free
demonstration of quantum advantage and also has opened the door to a number of promising
future directions.

First, the proof of soundness contained in this chapter only applies to classical adver-
saries. Since the work in this chapter was originally published, a work by several colleagues
and myself has extended the cryptographic proofs to the quantum case. In particular, we
show that when the protocol from this work is instantiated with a quantum secure TCF like
the one based off of LWE, it can be used to certify certain facts about the inner workings of
the quantum device, with implications for quantum cryptographic applications such as cer-
tifiable random number generation or even the verification of arbitrary computations. [49]
Second, our work has motivated the search for new trapdoor claw-free functions, as dis-
cussed in Section 5.4. At least one new construction has been discovered since this work
was published; ideally more will be found as the search continues. [40] More broadly, one
could also attempt to build modified protocols, which simplify either the requirements on
the cryptographic function or the interactions; interestingly, recent work has demonstrated
that using random oracles can remove the need for interactions in a TCF-based proof of
quantumness [41], or even remove the need for a TCF entirely! [44] Finally, while we have
focused our experimental discussions on Rydberg atoms, a number of other platforms also
exhibit features that facilitate the protocol’s implementation. For example, both trapped
ions and cavity-QED systems can allow all-to-all connectivity, while superconducting qubits
can be engineered to have biased noise [171]. This latter feature would allow noise to be
concentrated into error modes detectable by our proposed post-selection scheme.

5.7 Additional proofs and data

5.7.1 List decoding lemma

In this section we prove a bound on the probability that list decoding will succeed for a
particular value of y, given an oracle’s noise rate over all values of y. Recall that by the
Goldreich-Levin theorem [149], list decoding of the Hadamard code is possible if the noise
rate is noticeably less than 1/2.

Lemma 1. Consider a binary-valued function over two inputs g : Y × {0, 1}n → {0, 1},
and a noisy oracle G to that function. Assuming some distribution of values y ∈ Y and
r ∈ {0, 1}n, define ϵ ≡ Pry,r[G(y, r) ̸= g(y, r)] as the “noise rate” of the oracle. Now define
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the conditional noise rate for a particular y ∈ Y as

ϵy ≡ Pr
r
[G(y, r) ̸= g(y, r)] (5.10)

Then, the probability that ϵy is less than 1/2−µ(n) for any positive function µ, over randomly
selected y, is

pgood ≡ Pr
y
[ϵy < 1/2− µ(n)] ≥ 1− 2ϵ− 2µ(n). (5.11)

Proof. Let S ⊆ Y be the set of y values for which ϵy < 1/2 − µ(n). Then by definition we
have

ϵ = pgood · ϵy∈S + (1− pgood) · ϵy/∈S (5.12)

Noting that we must have ϵy ≥ 1/2− µ(n) for y /∈ S by definition, we may minimize the
right hand side of Equation 5.12, yielding the bound

ϵ > pgood · 0 + (1− pgood) · (1/2− µ(n)) (5.13)

Rearranging this expression we arrive at

pgood > 1− 2ϵ− 2µ(n)

which is what we desired to show.

5.7.2 Trapdoor claw-free function constructions

Here we present two trapdoor claw-free function families (TCFs) for use in the protocol of
this paper. These families are defined by three algorithms: Gen, a probabilistic algorithm
which selects an index i specifying one function in the family and outputs the corresponding
trapdoor data t; fi, the definition of the function itself; and T , a trapdoor algorithm which
efficiently inverts fi for any i, given the corresponding trapdoor data t. Here we provide the
definitions of the function families; proofs of their cryptographic properties are included in
the supplementary information. In these definitions we use a security parameter λ following
the notation of cryptographic literature; λ is informally equivalent to the “problem size” n
defined in the main text as the length of the TCF input string.

5.7.2.1 TCF from Rabin’s function x2 mod N

“Rabin’s function” fN(x) = x2 mod N , with N the product of two primes, was first used
in the context of public-key cryptography and digital signatures [132], [133]. We use it to
define the trapdoor claw-free function family FRabin, as follows.

Function generation

Gen
(
1λ
)
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1. Randomly choose two prime numbers p and q of length λ/2 bits, with p mod 4 ≡
q mod 4 ≡ 3 mod 4 15.

2. Return N = pq as the function index, and the tuple (p, q) as the trapdoor data.

Function definition

fN : [N/2]→ [N ] is defined as

fN(x) = x2 mod N (5.14)

The domain is restricted to [N/2] to remove extra trivial collisions of the form (x,−x).
Trapdoor

The trapdoor algorithm is the same as the decryption algorithm of the Rabin cryptosys-
tem [132]. On input y and key (p, q), the Rabin decryption algorithm returns four integers
(x0, x1,−x0,−x1) in the range [0, N). x0 and x1 can then be selected by choosing the two
values that are smaller than N/2. See proof in supplementary information for an overview
of the algorithm.

5.7.2.2 TCF from Decisional Diffie-Hellman

We now present a trapdoor claw-free function family FDDH based on the decisional Diffie-
Hellman problem (DDH). DDH is defined for a multiplicative group G; informally, the DDH
assumption states that for a group generator g and two integers a and b, given g, ga, and gb
it is computationally hard to distinguish gab from a random group element. We expand on a
known DDH-based trapdoor one-way function construction [130], [131], adding the claw-free
property to construct a TCF.

Function generation

Gen
(
1λ
)

1. Choose a group G of order q ∼ O
(
2λ
)
, and a generator g for that group.

2. For dimension k > log2 q choose a random invertible matrix M ∈ Zk×k
q .

3. Compute gM =
(
gMij

)
∈ Gk×k (element-wise exponentiation).

4. Choose a secret vector s ∈ {0, 1}k; compute the vector gMs (where Ms is the matrix-
vector product, and again the exponentiation is element-wise).

15In practice, p and q must be selected with some care such that Fermat factorization and Pollard’s p− 1
algorithm [172] cannot be used to efficiently factor N classically. Selecting p and q in the same manner as
for RSA encryption would be effective [173].
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5. Publish the pair
(
gM, gMs

)
, retain (g,M, s) as the trapdoor data.

Function definition

Let d be a power of two with d ∼ O (k2). We define the function fi as fi(b||x) := fi,b(x),
where || denotes concatenation, for a pair of functions fi,b : Zk

d → Gk:

fi,0 (x) = gMx (5.15)

fi,1 (x) = gMxgMs = gM(x+s) (5.16)

Trapdoor

The algorithm takes as input the trapdoor data (g,M, s) and a value y = gMx0 =
gM(x1+s), and returns the claw (x0,x1).

T ((g,M, s), y)

1. Compute M−1 using M.

2. Compute gM−1Mx0 = gx0 .

3. Take the discrete logarithm of each element of gx0 , yielding x0. Crucially,
this is possible because the elements of x are in Zd and d = poly (n), so the
discrete logarithm can be computed in polynomial time by brute force.

4. Compute x1 = x0 − s

5. Return (x0,x1)

5.7.3 Table of circuit sizes

A comparison of the resource requirements for computing x2 mod N , for various problem
sizes and circuit designs, is presented in Table 5.2. These counts are generated in the “abstract
circuit” model, in which error correction, qubit routing, and other practical considerations
are not included. For schoolbook and Karatsuba circuits, circuits are decomposed into a
Clifford+T gate set. For the “phase” circuits, we allow controlled arbitrary phase rotations,
as we expect these circuits to be appropriate for hardware (physical) qubits where these
gates are native. Accordingly, we do not provide T gate counts for those circuits.

5.7.4 Cryptographic proofs of TCF properties

Here we prove the cryptographic properties of the trapdoor claw-free functions (TCFs) pre-
sented in the Methods section of the main text. We base our definitions on the Noisy
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Circuit Qubits
Gates (CCRϕ/
Toffoli allowed)

Gates
(Clifford + T ) T Gates Depth

Qubit
measmts.

n = 128 (takes seconds on a desktop [174])
Qubit-optimized phase 128 1.1× 106 — — 1.1× 106 128
Gate-optimized phase 264 4.3× 105 — — 6.3× 104 0

Schoolbook 515 1.4× 105 9.1× 105 3.9× 105 1.9× 104 3.5× 104

Karatsuba 942 1.3× 105 7.7× 105 3.3× 105 2.0× 103 3.4× 104

n = 400 (takes hours on a desktop [174])
Qubit-optimized phase 400 3.3× 107∗ — — 3.3× 107∗ 400
Gate-optimized phase 812 4.2× 106∗ — — 6.2× 105∗ 0

Schoolbook 1603 1.3× 106 8.7× 106 3.6× 106 5.9× 104 3.3× 105

Karatsuba 3051 8.8× 105 5.4× 106 2.3× 106 5.3× 104 2.4× 105

n = 829 (record for factoring [175])
Qubit-optimized phase 829 3.0× 108∗ — — 2.9× 108∗ 829
Gate-optimized phase 1671 1.8× 107∗ — — 2.6× 106∗ 0

Schoolbook 3319 5.6× 106 3.8× 107 1.6× 107 1.2× 105∗ 1.4× 106

Karatsuba 5522 3.0× 106 1.8× 107 7.7× 106 1.1× 105∗ 8.0× 105

n = 1024 (exceeds factoring record)
Qubit-optimized phase 1024 5.6× 108∗ — — 5.5× 108∗ 1024
Gate-optimized phase 2061 2.7× 107∗ — — 4.0× 106∗ 0

Schoolbook 4097 8.3× 106 5.7× 107 2.4× 107 1.5× 105∗ 2.1× 106

Karatsuba 6801 4.3× 106 2.6× 107 1.1× 107 1.4× 105∗ 1.1× 106

Other algs. at n = 1024

Rev. schoolbook † 8192 — 6.4× 108 2.2× 108 1.1× 108 0
Rev. Karatsuba † 12544 — 5.7× 108 1.9× 108 2.4× 107 0

Shor’s alg. ‡ 3100 — — 1.9× 109∗ — —

Table 5.2: Circuit sizes for various values of n = logN . Values may vary for different N
of the same length. “Qubit-optimized phase” and “gate-optimized phase” refer to the circuits
given in Figure 3(a) and 3(b) of the main text, respectively. “Qubit measmts.” refers to the
number of times qubits are measured and then reused during execution of the circuit. See
Chapter 7 for alternative circuit constructions to the ones presented here. ∗From analytic
estimate rather than building explicit circuit. †Reversible circuits constructed using Q#
implementation of Ref. [176], and scaled to include Montgomery reduction. ‡Estimate from
[177].

Trapdoor Claw-free Function family (NTCF) definition given in Definition 3.1 of Ref. [39],
with certain modifications such as removing the adaptive hardcore bit requirement and the
“noisy” nature of the functions.

We emphasize that in the definitions below, we define security only against classical
attackers. Both the x2 mod N and DDH constructions could be trivially defeated by a
quantum adversary via Shor’s algorithm; since the purpose of the protocol in this paper is
to demonstrate quantum capability, this type of adversary is allowed.
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We also note that the TCF definition allows the 2-to-1 property to be “imperfect”—that
is, we allow the fraction of pre-images which have a colliding pair to be less than 1. In the
protocol, the verifier may simply discard any runs in which the prover supplied an output y
value that is not part of a claw, that is, does not have two corresponding inputs. This will
not affect the prover’s ability to pass the classical threshold (since these runs are counted
neither for or against the prover); it will only possibly affect the number of iterations of the
protocol required to exceed the classical bound with the desired statistical significance. In
the definition below we require the fraction of “good” inputs be at least a constant (which
we set to 0.9); in principle the fraction could be as low as 1/poly(λ) without interfering with
the protocol’s effectiveness.

5.7.4.1 TCF definition

We use the following definition of a Trapdoor Claw-free Function family:

Definition 1. Let λ be a security parameter, I a set of function indices, and Xi and Yi finite
sets for each i ∈ I. A family of functions

F = {fi : Xi → Yi}i∈I
is called a trapdoor claw free (TCF) family if the following conditions hold:

1. Efficient Function Generation. There exists an efficient probabilistic algorithm
Gen which generates a key i ∈ I and the associated trapdoor data ti:

(i, ti)← Gen(1λ)

2. Trapdoor Injective Pair. For all indices i ∈ I, the following conditions hold:

a) Injective pair: Consider the set Ri of all tuples (x0, x1) such that fi(x0) = fi(x1).
Let X ′

i ⊆ Xi be the set of values x which appear in the elements of Ri. For all
x ∈ X ′

i, x appears in exactly one element of Ri; furthermore, there exists a value
λc such that for all λ > λc, |X ′

i|/|Xi| > 0.9.
b) Trapdoor: There exists an efficient deterministic algorithm T such that for all

y ∈ Yi and (x0, x1) such that fi(x0) = fi(x1) = y, T (ti, y) = (x0, x1).

3. Claw-free. For any non-uniform probabilistic polynomial time (nu-PPT) classical
Turing machine A, there exists a negligible function ϵ(·) such that

Pr [fi(x0) = fi(x1) ∧ x0 ̸= x1|(x0, x1)← A(i)] < ϵ(λ)

where the probability is over both choice of i and the random coins of A.

4. Efficient Superposition. There exists an efficient quantum circuit that on input a
key i prepares the state

1√
|Xi|

∑
x∈Xi

|x⟩ |fi(x)⟩
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5.7.4.2 Proof of x2 mod N TCF

In this section we prove that the function family FRabin (defined in Methods) is a TCF by
demonstrating each of the properties of Definition 1. Most of the properties follow directly
from properties of the Rabin cryptosystem [132]; we reproduce several of the arguments here
for completeness.

Theorem 4. The function family FRabin is trapdoor claw-free, under the assumption of
hardness of integer factorization.

Proof. We demonstrate each of the properties of Definition 1:

1. Efficient Function Generation. Sampling large primes to generate p, q and N is
efficient [132].

2. Trapdoor Injective Pair.

a) Injective pair: By definition of the function, Yi is the set of quadratic residues
modulo N . For any y ∈ Yi, consider the two values a < p/2 and b < q/2 such
that a2 ≡ y mod p and b2 ≡ y mod q. These values exist because y is a quadratic
residue modulo pq, therefore it is also a quadratic residue modulo p and q. Define
c ≡ 1 mod p ≡ 0 mod q and d ≡ 0 mod p ≡ 1 mod q. The following four values
x in the range [0, N) have x2 ≡ y mod N : ac + bd, ac − bd,−ac + bd,−ac − bd.
Exactly two of these values are in the domain [N/2] of the TCF, and constitute the
injective pair; moreover, these two values will be unique as long as a, b ̸= 0. Thus
we may define the set X ′

i = {x ∈ [N/2]|x ̸≡ 0 mod p ∧ x ̸≡ 0 mod q}. There exist
exactly ((p− 1) + (q − 1))/2 multiples of p or q in the set of integers Xi = [N/2],
thus |X ′

i|/|Xi| = 1 − ((p − 1) + (q − 1))/N . Recall that p, q are defined to have
length λ/2; if we let λc = 12, then p, q > 25 = 32. Since 1− (31 + 31)/322 > 0.9
and |X ′

i|/|Xi| increases monotonically with λ, we have |X ′
i|/|Xi| > 0.9 for all

λ > λc.

b) Trapdoor: Because p and q were selected to have p ≡ q ≡ 3 mod 4, a and b
in the expressions above can always be computed as a = y(p+1)/4 mod p and
b = y(q+1)/4 mod q, and then the preimages can be computed as defined above.

3. Claw-free. We show that knowledge of a claw x0, x1 can be used directly to factor
N . Writing the claw as (ac+ bd, ac− bd) using the values a, b, c, d from above, we have
x0 + x1 = 2ac. Because c = 0 mod q, gcd(x0 + x1, N) = q can be efficiently computed,
which then also yields p = N/q. Thus, an algorithm that could be used efficiently to
find claws could be equally used to efficiently factor N , which we assume to be hard.

4. Efficient Superposition. The set of preimages Xi is the set of integers [N/2]. A uni-
form superposition

∑
x∈Xi
|x⟩ may be computed by generating a uniform superposition

of all bitstrings of length n (via Hadamard gate on every qubit), and then evaluating a
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comparator circuit that generates the state
∑ |x⟩ |x < N/2⟩ where |x < N/2⟩ is a bit

on an ancilla. If this ancilla is then measured and the result is |1⟩, the state is col-
lapsed onto the superposition

∑
x∈Xi
|x⟩ (if the result is |0⟩ the process should simply

be repeated). Then a multiplication circuit to an empty register may be executed to
generate the desired state

∑
x∈X |x⟩ |x2 mod N⟩.

5.7.4.3 Proof of Decisional Diffie-Hellman TCF

We now prove that FDDH (defined in Methods) forms a trapdoor claw-free function family.

Theorem 5. The function family FDDH is trapdoor claw-free, under the assumption of hard-
ness of the decisional Diffie-Hellman problem for the group G.

Proof. We demonstrate each of the properties of Definition 1:

1. Efficient Function Generation. Each step of Gen is efficient by inspection.

2. Trapdoor Injective Pair.

a) Injective pair: First we note that the matrix M is chosen to be invertible, thus
f0 and f1 are one-to-one. Therefore for all x0 ∈ Xi, at most one other preimage
x1 ∈ Xi has fi(x0) = fi(x1). Furthermore, since colliding pairs have the structure
(0||x′

0), (1||x′
1) with x′

0 = x′
1 + s and s ∈ {0, 1}k, the only preimages that will

not form part of a colliding pair are those where x′
0 has a zero element at an

index where s is nonzero, or x′
1 has an element equal to d− 1 where s is nonzero

(the vector element will be outside of the range of vector elements for the other
vector). Thus |X ′

k|/|Xk| > (1− 1/d)k. Since d ∼ O(k2) and k ∼ O(λ), we have
limλ→∞ |X ′

k|/|Xk| = 1 with |X ′
k|/|Xk| monotonically increasing. Therefore, there

exists a value λc such that |X ′
k|/|Xk| > 0.9 for all λ > λc. (We note that if we set

k = λ and d = k2, then λc = 10.)

b) Trapdoor: The steps of the algorithm T are efficient by inspection. Crucially, the
discrete logarithm of each vector element is possible by brute force, because the
elements of x0 only take values up to polynomial in λ.

3. Claw-free. An algorithm which could efficiently compute a claw (0||x′
0, 1||x′

1) could
then trivially compute the secret vector s = x′

0 − x′
1. For any matrix M′, the exis-

tence of an algorithm to uniquely determine s from (gM
′
, gM

′s) would directly imply
an algorithm for determining whether M′ has full rank. But DDH implies it is compu-
tationally hard to determine whether a matrix M′ is invertible given gM

′ [130], [131].
Therefore DDH implies the claw-free property.
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4. Efficient Superposition. Because d is a power of two, a superposition of all possible
preimages x can be computed by applying Hadamard gates to every qubit in a register
all initialized to |0⟩. The function f can then be computed by a quantum circuit
implementing a classical algorithm for the group operation of G.

5.7.5 Overview of Trapdoor Claw-free Functions

In this section, we provide a brief overview of the cryptographic concepts upon which this
work relies.

Foundational to the field of cryptography is the idea of a one-way function. Informally,
this type of function is easy to compute, but hard to invert. Here, “easy” means that the
function can be evaluated in time polynomial in the length of the input. By “hard” we mean
that the cost of the best algorithm to invert the function is superpolynomial in the length of
the input. In practice, for a given one-way function we desire that there exists a particular
problem size (input length) for which the function can be evaluated fast enough that it is not
overly costly to use, but for which inversion would be infeasible for even an adversary with
large (but realistic) computing power. One way functions can be used directly to construct
many useful cryptographic schemes, including pseudorandom number generators, private-key
encryption, and secure digital signatures.

In this work, we rely on a specific type of one-way function called a trapdoor claw-free
function (TCF). This class of functions has two additional features.

First, it has a trapdoor. This means that while the function is hard to invert in general,
with the knowedge of some secret data (the trapdoor key) inversion becomes easy. This
secret data should be easy to generate when the function is chosen (from a large family of
similar functions), but should be hard to find given just the description of the function itself.
For example, in this work we describe the function x2 mod N , with N the product of two
primes. The trapdoor is the factorization of N . It is easy to generate this function along
with the trapdoor, by simply selecting two primes and multiplying them together. However,
under the assumption of hardness of integer factorization, given only the function description
(namely the value N) it is computationally hard to find the trapdoor (the factors p and q).

The second additional feature of a TCF is that it is claw-free. This means that the
function is two-to-one (has two inputs that map to each output), but it is computationally
hard to find two such colliding inputs without the trapdoor. Note that if it were possible
to invert the function it would be trivial to find a collision (by picking an input, computing
the function to get the output corresponding to it, and then inverting the function to find
the second input mapping to that output). However the claw-free property is a bit stronger
than the hardness of inversion: there exist some two-to-one functions which are one-way but
not claw-free.

Importantly, in this work we only require that breaking the claw-free property is hard
classically—indeed, the claw-free property of the DDH and x2 mod N TCFs described here
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can be fully broken by quantum computers. However, perhaps surprisingly, we do not require
that breaking the claw-free property is easy for a quantum machine. In fact, the claw-free
property of the LWE and Ring-LWE based TCFs remains secure even against quantum
attacks. This corresponds to a very powerful property of the protocol in this paper, and
other related protocols: that a quantum computer can pass the test without actually being
able to find a claw. This subtle distinction stems from the fact that the quantum prover
generates a superposition over two inputs that collide. No measurement of such a state can
yield both superposed values classically in full, but the test is designed to not require both
values—just the results of an appropriate measurement of the superposition. A classical
cheater, on the other hand, still cannot pass the test because the idea of a superposition
does not exist classically.

5.7.6 Explanation of circuit complexities

Here we describe each of the asymptotic circuit complexities listed in Table I of the main
text. For these estimates we drop factors of log log n or less. In all cases, we assume integer
multiplication can be performed in time O(n log n) using the Schonhage-Strassen algorithm.

We emphasize that the value of n necessary to achieve classical hardness in practice varies
widely among these functions, and also that the asymptotic complexities here may not be
applicable at practical values of n.

LWE [39], [126] The LWE cost is dominated by multiplying an O(n log n) × n matrix
of integers by a length n vector. The integers are of length log n, so each multiplication is
expected to take approximately O(log n) time. Thus, the evaluation of the entire function
requires O(n2 log2 n) operations.

x2 mod N [132] The function can be computed in time O(n log n) using Schonhage-
Strassen multiplication algorithm and Montgomery reduction for the modulus.

Ring-LWE [41], [178]–[180] Ring-LWE is dominated by the cost of multiplying one poly-
nomial by log n other polynomials. Through Number Theoretic Transform techniques similar
to the Schonhage-Strassen algorithm, each polynomial multiplication can be performed in
time O(n log n), so the total runtime is O(n log2 n). We note that integer multiplication and
polynomial multiplication can be mapped onto each other, so the runtimes for x2 mod N and
Ring-LWE scale identically except for the fact that Ring-LWE requires log n multiplications
instead of O(1).

Diffie-Hellman [129]–[131] The Diffie-Hellman based construction defined in Methods
requires performing multiplication of a k × k matrix by a vector, with k ∼ O(n). However,
the “addition” operation for the matrix-vector multiply is the group operation of G; we
expect this operation to have complexity at least O(n log n) (for e.g. integer multiplication).
The exponentiation operations have exponent at most d ∼ O(k2), so can be performed in
O(log n) group operations. So, for each of the k2 matrix elements one must perform an
operation of complexity O(n log2 n), yielding a total complexity of O(n3 log2 n).

Shor’s Algorithm [119] Allowing for the use of Schonhage-Strassen integer multiplica-
tion, Shor’s algorithm requires O(n2 log n log log n) gates [181].
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5.7.7 Optimal classical algorithm

Here we provide an example of a classical algorithm that saturates the probability bound of
Theorem 2 of the main text. It has px = 1 and pCHSH = 3/4.

For a TCF f : X → Y , consider a classical prover that simply picks some value x0 ∈ X,
and then computes y as f(x0), without ever having knowledge of x1. If the verifier requests a
projective x measurement, they always return x0, causing the verifier to accept with px = 1.
In the other case (performing rounds 2 and 3 of the protocol), upon receiving r they compute
b0 = x0 · r. The cheating prover now simply assumes that x0 · r = x1 · r, and thus that
the correct single-qubit state that would be held by a quantum prover is |b0⟩, and returns
measurement outcomes accordingly. With probability 1/2, |b0⟩ is in fact the correct single-
qubit state; in this case they can always cause the verifier to accept. On the other hand, if
x0 · r ̸= x1 · r, the correct state is either |+⟩ or |−⟩. With probability 1

2
, the measurement

outcome reported by the cheating prover will happen to be correct for this state too. Overall,
this cheating prover will have pCHSH = (1 + 1

2
)/2 = 3

4
.

Thus we see px + 4pCHSH − 4 = 1 + 4 · 3
4
− 4 = 0 which saturates the bound.

5.7.8 Quantum circuits for Karatsuba and schoolbook
multiplication

Classically, multiplication of large integers is generally performed using recursive algorithms
such as Schonhage-Strassen [182] and Karatsuba which have complexity as low as O(n log n).
In the quantum setting, the need to store garbage bits at each level of recursion has limited
their usefulness [183], [184]. There does exist a reversible construction of Karatsuba mul-
tiplication that uses a linear number of qubits [176], but due to overhead required for its
implementation it does not begin to outperform schoolbook multiplication until the problem
size reaches tens of thousands of bits.

Leveraging the irreversibility described in Section IID of the main text, we are able use
these recursive algorithms directly, without needing to maintain garbage bits for later un-
computation. We implement both the O(n1.58) Karatsuba multiplication algorithm and the
simple O(n2) “schoolbook” algorithm. Due to efficiencies gained from discarding garbage
bits, we find that the Karatsuba algorithm already begins to outcompete schoolbook mul-
tiplication at problem sizes of under 100 bits. Thus Karatsuba seems to be the best can-
didate for “full-scale” tests of quantum advantage at problem sizes of n ∼ 500 − 1000 bits.
We also note that the Schonhage-Strassen algorithm scales even better than Karatsuba as
O(n log n log log n). However, even in classical applications it has too much overhead to be
useful at these problem sizes. We leave its potential quantum implementation to a future
work.

The multiplication algorithms just described do not include the modulo N operation, it
must be performed in a separate step. We implement the modulo using only two classical-
quantum multiplications and one addition via Montgomery reduction [185]. Montgomery
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reduction does introduce a constant R′ into the product, but this factor can be removed in
classical post-processing after y = x2R′ mod N is measured.

Finally, we note that at the implementation level, optimizing classical circuits for modular
integer multiplication has received significant study in the context of performing cryptogra-
phy on embedded devices and FPGAs [186]–[188]. Mapping such optimized circuits into the
quantum context may be a promising avenue for further research.

5.7.9 Details of post-selection scheme

In this section we describe several details of the post-selection scheme proposed in Section IIC
of the main text.

5.7.9.1 Quantum prover with no phase coherence saturates the classical bound

Consider the two states |ψ±⟩ = (|x0⟩ ± |x1⟩)x |y⟩y for some claw (x0, x1) with y = fk(x0) =
fk(x1). Note that |ψ+⟩ is the state that would be held by a noise-free prover. Suppose a
noisy quantum prover is capable of generating the mixed state

ρδ = (1/2 + δ) |ψ+⟩ ⟨ψ+|+ (1/2− δ) |ψ−⟩ ⟨ψ−| . (5.17)

In words, they are able to generate a state that is a superposition of the correct bitstrings,
but with the correct phase only 1/2 + δ fraction of the time. Here we show that such a
prover can exceed the classical threshold of Theorem 2 of the main text, whenever δ > 0.
We proceed by examining this prover’s behavior during the protocol.

First, we note that if the verifier requests a projective x measurement after Round 1 of the
protocol, this prover will always succeed—they simply measure the x register as instructed,
and the phase is not relevant. Thus, using the notation of Theorem 2, px = 1. With this value
set, to exceed the bound we must achieve pCHSH > 3/4. Naively performing the rest of the
protocol as described in the main text does not exceed the bound when δ is small. However,
the noisy prover can exceed the bound if they adjust the angle of their measurements in the
third round of protocol (but preserve the sign of the measurement requested by the prover).
We now demonstrate how.

Define |ϕ⟩ as the “correct” single-qubit state at the end of Round 2—one of {|0⟩ , |1⟩ , |+⟩ , |−⟩}.
Let f↕ be the probability that our noisy prover holds the correct state when |ϕ⟩ ∈ {|0⟩ , |1⟩},
and f↔ the corresponding probability when |ϕ⟩ ∈ {|0⟩ , |1⟩}. In the first case, the potential
phase error of our prover does not affect the single-qubit state, so f↕ = 1. In the other
case, the state is only correct when the phase is correct, so f↔ = 1/2 + δ. We see that our
prover will hold the correct single-qubit state with probability greater than 3/4. But, if they
naively measure in the prescribed off-diagonal basis θ ∈ {π/4,−π/4} from the verifier, for
small δ their success probability will be less than 3/4. This can be rectified by adjusting the
rotation angle of the measurement basis.

Letting ±θ′ define the pair of measurement angles used by the prover in step 3 of the
protocol (nominally θ′ = |θ| = π/4), we can now express the prover’s success probability
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pCHSH as

pm =
1

2

[
cos2

(
θ′

2

)
f↕ + cos2

(
θ′

2
− π

4

)
f↔ + sin2

(
θ′

2

)
(1− f↕) + sin2

(
θ′

2
− π

4

)
(1− f↔)

]
(5.18)

If the prover measures with θ′ = π/4 as prescribed in the protocol, the success rate will be
pCHSH ≈ 0.68 + O(δ) < 3/4. However, if they instead adjust their measurement angle to
θ = δ, they instead achieve pCHSH = 3/4 + 3δ2/8−O(δ3), which exceeds the classical bound
(provided that δ is large enough to be noticeable).

In practice, both f↕ and f↔ are likely to be less than one; the optimal measurement angle
can be determined as

θ′opt = tan−1

(
2f↔ − 1

2f↕ − 1

)
(5.19)

which is the result of optimizing Equation 5.18 over θ′. In a real experiment, it would be
most effective to empirically determine f↕ and f↔ and then use Equation 5.19 to determine
the optimal measurement angle.

5.7.9.2 Details of simulation and error model

We now describe the details of the numerical simulation that was used to generate Figure 2
of the main text. For several values of the overall circuit fidelity F , we established a per-gate
fidelity as f = F1/Ng where Ng is the number of gates in the x2 mod N circuit. We then
generated a new circuit to compute the function (3ax)2 mod 32aN for various values of a (see
next subsection for an explanation of the choice k = 3a). For each gate in the new circuit,
with probability 1 − f we added a Pauli “error” operator randomly chosen from {X, Y, Z}
to one of the qubits to which the gate was being applied.

For the simulation, we randomly chose two primes p and q that multiplied to yield an
integer N of length 512 bits. We then randomly chose a large set of colliding preimage pairs,
and simulated the circuit separately for each such preimage (which is classically efficient,
since the circuits only consist of X, CNOT, and Toffoli gates). The relative phase between
each pair of preimages (due to error gates) was tracked explicitly during the simulation.
Finally, the expected success rate of the prover was determined by analyzing the correctness
of the bitstrings and their relative phase at the end of the circuit.

The primes p and q used to generate Figure 2 of the main text are (in base 10):

p = 113287732919697174280284729511923238986362403955638184856698528941220766063369
q = 98359967382337110635377957241353362183812709461386334819166502848512740692727

5.7.9.3 Choice of k = 3a to improve postselection for x2 mod N

In the previous subsection, we map the TCF fN = x2 mod N to the function f ′
N = (kx)2 mod

k2N . To achieve this at the implementation level, we may use essentially the same circuit for
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modular multiplication; the only new requirement is to efficiently generate a superposition
of multiples kx in the x register. We generate this superposition by starting with a uniform
superposition over values x and then multiplying by k.

Normally, quantum multiplication circuits (like those we use to evaluate x2 mod N) per-
form an out-of-place multiplication, where the result is stored in a new register. In this case,
however, it is preferable to do the multiplication “in-place,” where the result is stored in the
input register itself—this way the y value is computed directly from the input register and
thus is more likely to reflect errors that may occur in the input.

In general, performing in-place multiplication is complicated, particularly on a quantum
register, because the input is being modified as it is being consumed (not to mention concerns
about reversibility). However, multiplication by small constants is much simpler to imple-
ment. By setting k to a power of three, we are able to implement the in-place multiplication
by performing a sequence of in-place multiplications by 3, which can each be performed quite
efficiently (see implementation in the attached Cirq code 16).

5.7.9.4 Theory prediction of Figure 2 of the main text

For the dashed “theory prediction” lines of Figure 2 of the main text, we predicted the
success probabilities under two assumptions (which the numerical experiments are intended
to test). First, among noisy runs where at least one bit flip error occurs, the output bitstring
is approximately uniformly distributed. Second, we assume that with at least one phase flip
error, the probability that the phase is correct in the final state is 1/2.

Under these assumptions, we compute the predicted success rates px and pCHSH as follows:

1. For a given overall fidelity F of the original x2 mod N circuit containing Ng gates,
compute a per-gate fidelity f = F1/Ng . Then compute the expected overall fidelity F ′

of running the slightly larger (kx)2 mod k2N containing N ′
g gates as fN ′

g .

2. Using F ′ and the given error model (see “Details of simulation and error model” section
above), compute three disjoint probabilities: that no errors occur, that only phase
errors occur, or that at least one bit flip error (and possibly also phase errors) occurs.

3. Compute the probability that the output will pass postselection, which includes both
cases with no bit flip errors and those that are corrupted but happen to pass postse-
lection by chance.

4. Normalizing to only those runs that pass postselection, compute px and pCHSH:

a) px is computed as the probability that no bit flip errors occurred (among those
runs that pass postselection). This is a lower bound (that seems intuitively tight);
it assumes a negligible probability that the measured pair (x, y) still has y = f(x)
despite bit flip errors.

16Code is available at https://github.com/GregDMeyer/quantum-advantage and is archived on Zen-
odo [155]

https://github.com/GregDMeyer/quantum-advantage
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b) pCHSH is computed by finding the probability that no errors occurred that would
affect the single-qubit state at the end of round 2. When the correct single-qubit
state should be polarized along Z, this is taken to be the probability that no bit flip
errors occurred (phase errors are allowed since they will not affect this state); when
the correct state should be polarized along X, it is taken as the probability that
no errors at all have occurred. In these “no-error” cases, we compute the verifier’s
probability of accepting by applying the adjusted measurement basis described in
the first sub-section above, “Quantum prover with no phase coherence saturates
the classical bound”. Finally, for the case that there was an error that could
affect the single-qubit state, the probability that the verifier receives a correct
measurement outcome is taken to be 1/2 (the single-qubit state is taken to be
maximally mixed).

5. Compute the measure of “quantumness” from px and pCHSH.

6. Compute the estimate runtime by multiplying the increase in quantum circuit size by
the expected number of iterations required to pass postselection (which is computed
from the analysis above).
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Chapter 6

Implementing interactive protocols on a
trapped-ion quantum computer

6.1 Introduction
To date, the field of experimental quantum computation has largely operated in a non-
interactive paradigm, where classical data is extracted from the computation only at the
very last step. While this has led to many exciting advances, it has also become clear
that in practice, interactivity—made possible by mid-circuit measurements performed on
the quantum device—will be crucial to the operation of useful quantum computers. For
example, within quantum error correction, projective mid-circuit measurements are used to
convert a continuum of possible errors into a specific discrete set of errors which can be
corrected, as has been demonstrated in a recent experiment [151], [168]. Certain quantum
machine learning algorithms also leverage mid-circuit measurements to introduce essential
non-linearities [189]. Recent work has shown that interaction can do much more: it has
emerged as an indispensable tool for verifying the behavior of untrusted quantum devices [39],
[47], [48], and even for testing the fundamentals of quantum mechanics itself [120].

Consider the scenario of a classical computer sending commands to an untrusted quan-
tum device that it cannot feasibly simulate. This could consist of a lab computer testing
a new, large quantum device, but also perhaps a user connecting to a quantum cloud com-
puting service over the internet. At first sight, the inability of the classical machine to
simulate the quantum one seems to pose a difficulty for certifying the output. This chal-
lenge mirrors one explored in the field of classical computer science, which asks whether
a skeptical, computationally-bounded “verifier,” who is not powerful enough to validate a
given statement on their own, can be convinced of its veracity by a more powerful but un-
trusted “prover.” Several decades ago, this idea began to be pursued through a novel tool
called an interactive proof. In these protocols, the verifier’s goal is to accept only valid
statements, regardless of whether the prover behaves honestly or attempts to cheat. One
of the greatest achievements of computational complexity theory is a set of results showing
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that in certain scenarios multiple rounds of interaction allow the verifier to detect cheating
by even arbitrarily computationally powerful provers [190]–[192]. The essential idea is that
interaction can force the prover to commit to some piece of information early in the proto-
col, upon which the verifier follows up with queries that can only be answered consistently
if the prover is being truthful. In exciting recent developments, success has been found in
the application of this idea to quantum computing: interactive proofs have been shown to
allow the verification of a number of practical quantum tasks, including random number
generation, [39] remote quantum state preparation, [48] and the delegation of computations
to an untrusted quantum server.[47] Perhaps the most direct application of an interactive
protocol is for a “cryptographic proof of quantumness”—a protocol that allows a quantum
device to convincingly demonstrate its non-classical behavior to a polynomial-time classical
verifier, by performing a task that is assumed to be computationally hard for a classical
machine yet is efficient to check [39], [41], [115].

The simplest proof of quantumness in general is a Bell test (which does not rely on a
computational hardness assumption) [127]. It uses entanglement to generate correlations that
would be impossible to classically reproduce without communication. While the Bell test’s
simplicity is attractive, avoiding the communication loophole requires the use of multiple
quantum devices which are separated by considerable distance. [193]–[195] In order to prove
the quantumness of a single “black-box” quantum device whose inner workings are hidden
from the verifier, one can instead rely on differences in classical and quantum computational
power—in other words, asking the device to demonstrate quantum computational advantage.
In contrast to recent sampling-based tests of quantum computational advantage [15], [17],
[18], [20], [21], [32]–[35], [114], in a cryptographic proof of quantumness the verification step
must also be efficient. While in principle any algorithm that exhibits a quantum speedup
and has an efficiently-verifiable output could be used for this purpose, most such experiments
are infeasible today because the necessary circuits are far too large to run successfully on
current quantum computers. Remarkably, it has been shown that interactive proofs provide
a way to reduce the experimental cost (in qubits and gate depth) of this type of test, while
maintaining efficient verification and classical hardness.

In practice, the experimental implementation of interactivity is extremely challenging. It
requires the ability to independently measure subsets of qubits in the middle of a quantum
circuit and to continue coherent evolution afterwards. Unfortunately, the measurement of a
target qubit typically disturbs neighboring qubits, degrading the quality of computations fol-
lowing the mid-circuit measurement. One solution, which finds commonality among atomic
quantum computing platforms, is to spatially isolate target qubits via shuttling [196]–[198].
While daunting from the perspective of quantum control, experimental progress toward co-
herent qubit shuttling opens the door not only to interactivity but also to distinct information
processing architectures [199].

In this work, we implement two complementary interactive cryptographic proof of quan-
tumness protocols, shown in the schematic of Fig. 6.1, on an ion trap quantum computer
with up to 11 qubits using circuits with up to 145 gates. The interactions between verifier
and prover are enabled by the experimental realization of mid-circuit measurements on a
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Figure 6.1: Schematic of an interactive quantum verification protocol. The verifier’s
goal is to test the “quantumness" of the prover through an exchange of classical information.
The protocol begins with the verifier sending the prover an instance of a trapdoor claw-free
function. By applying this function to a superposition of all possible inputs and projec-
tively measuring the result, the prover commits to a particular quantum state |x0⟩ + |x1⟩.
Subsequent challenges issued by the verifier specify how to measure this state and enable
the efficient validation of the prover’s commitment. The LWE-based protocol requires two
rounds of interaction, while the factoring-based protocol requires an additional round (green
box).

portion of the qubits (Fig. 6.2) [151], [198], [200]. The first protocol involves two rounds
of interaction and is based upon the learning with errors (LWE) problem [126], [201]. The
LWE construction is unique because it exhibits a property known as the “adaptive hardcore
bit” [39] (described in more detail in the next section), which enables a particularly sim-
ple measurement scheme. The second protocol is the one introduced in Chapter 5, which
circumvents the need for this special property and thus applies to a more general class of
cryptographic functions. By using an additional round of interaction, the cryptographic
information is condensed onto the state of a single qubit. This makes it possible to imple-
ment a cryptographic proof of quantumness which is as hard to spoof classically as factoring,
but whose associated circuits can exhibit an asymptotic scaling much simpler than Shor’s
algorithm (O(n log n) instead of O(n2 log n), in terms of gate counts)[115].
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6.2 Trapdoor claw-free functions
Both interactive protocols (Fig. 6.1) rely upon a cryptographic primitive called a trapdoor
claw-free function (TCF) [202]—a 2-to-1 function f for which it is cryptographically hard
to find two inputs mapping to the same output. Such pairs of colliding inputs are called
“claws”, and the term “claw-free” refers to the hardness of finding them. The function also
has a “trapdoor,” a secret key with which it is easy to compute the inputs x0 and x1 from
any output w = f(x0) = f(x1). The intuition behind the protocols is the following: Despite
the claw-free property, a quantum computer can efficiently generate a superposition of two
inputs that form a claw; this is most simply realized by evaluating f on a superposition of
the entire domain, and then collapsing to a single output, w, via measurement. In this way,
a quantum prover can generate the state |ψ⟩ = (|x0⟩+ |x1⟩) |w⟩, where w is the measurement
result. The prover now sends w to the verifier, who then uses the trapdoor to compute x0
and x1, thus giving the verifier full knowledge of the prover’s quantum state. The verifier
then asks the prover to measure |ψ⟩. In particular, they request either a standard basis
measurement (yielding x0 or x1 in full), or a measurement that interferes the states |x0⟩
and |x1⟩. (Note that the value of w, and by association x0 and x1, changes each time the
protocol is executed, so it is not possible to find a collision (x0, x1) by simply repeating
this process with a standard basis measurement multiple times). The verifier checks the
measurement result on a per-shot basis. Crucially, consistently producing correct values for
these measurements results is impossible for a classical prover (assuming they cannot find a
claw of the TCF), so reliably returning correct results constitutes a proof of quantumness.

6.2.1 The learning with errors problem

It is believed to be classically intractable to recover an input vector from the result of
certain noisy matrix-vector multiplications—this constitutes the LWE problem [126], [201].
In particular, a secret vector, s ∈ {0, 1}n, can be encoded into an output vector, y = As+ e,
where A ∈ Zm×n

q is a matrix and e is an error vector corresponding to the noise. Using
the LWE problem, a TCF can be constructed as f(b, x) = ⌊Ax + b · y⌉, where b is a single
bit that controls whether y gets added to Ax and ⌊·⌉ denotes a rounding operation [203],
[204] (see Methods section 6.6.7 for additional details). Here, s and e play the role of the
trapdoor, and a claw corresponds to colliding inputs {(0, x0), (1, x1)} with f(0, x0) = f(1, x1)
and x0 = x1+s. By implementing the protocol described above and illustrated in Figure 6.1,
the prover is able to generate the state |ψ⟩ = (|0, x0⟩ + |1, x1⟩) |w⟩. For the aforementioned
“interference” measurement, the prover simply measures each qubit of the superposition in
the X basis. Crucially, the result of this measurement is cryptographically protected by
the adaptive hardcore bit property, which is a strengthening of the claw-free property [39].
Informally, it says that for any input x0 (of the prover’s choosing), it is cryptographically
hard to determine even a single bit of information about x1 (as opposed to the entire value,
which is the guarantee of the claw-free assumption).
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6.2.2 Rabin’s function

The function f(x) = x2 mod N , with N being the product of two primes, was originally
introduced in the context of digital signatures [132], [133]. This function has the property
that finding two colliding inputs (a claw) in the range [0, N/2] is as hard as factoring N .
Moreover, the prime decomposition N = pq can serve as a trapdoor, enabling one to invert
the function for any output. Thus, f(x) is a trapdoor claw-free function. However, f(x)
does not have the adaptive hardcore bit property, making the simple X-basis “interference”
measurement (described in the LWE context above) not provably secure. To get around this,
we perform the “interference” measurement differently. First, the verifier chooses a random
subset of the qubits of the superposition, and the prover stores the parity of that subset on
an ancilla. Then, the prover measures everything except the ancilla in the X basis. Given
our cryptographic assumption that the prover cannot find a claw, the prover cannot guess
the polarization of the remaining ancillary qubit. This is directly analogous to how, in Bell
experiments, the assumption of no-signaling-faster-than-light implies that if Alice measures
one half of an EPR pair, a space-like separated Bob who holds the other half is unable
to immediately guess its polarization. Following this intuition, the verifier requests a mea-
surement of the ancilla qubit in the Z +X or Z −X basis, effectively completing the Bell
test [127], [128]; the verifier accepts if the prover returns the more likely measurement out-
come. Crucially, the dependence of the measurement result on the claw renders it infeasible
to guess classically [115].

6.3 Implementing an interactive cryptographic proof
In order to implement an interactive cryptographic proof of quantumness, we design quantum
circuits for both the LWE- and factoring-based protocols. The high-level circuit diagrams are
shown in Figs. 6.3(a,b). In both cases, the circuits are composed of several sections. First,
the prover creates a uniform superposition |ψ⟩ = ∑2n−1

x=0 |x⟩ via Hadamard gates, where n
is the number of input qubits. Then, they compute the TCF on an output register using
this superposition as input [Fig. 6.3(a,d)], thereby generating the state |ψ⟩ =∑x |x⟩ |f(x)⟩.
Next, the prover performs a mid-circuit measurement on the output register, collapsing
the state to |ψ⟩ = (|x0⟩+ |x1⟩) |w⟩. Finally, based on the verifier’s choice of measurement
scheme (i.e. standard vs. interference), the prover must perform additional coherent gates
and measurements (see Methods for a full description of the quantum circuits used).

We implement both interactive protocols using an ion trap quantum computer, with a
base chain length of 15 ions (Fig. 6.2); for each 171Yb+ ion, a qubit is encoded in a pair of
hyperfine levels [205]. The quantum circuits are implemented via the consecutive application
of native single and two-qubit gates using individual optical addressing [Fig. 6.2(a)] [206].
In order to realize rapid successive two-qubit interactions, we position the ions in a single,
closely-spaced linear chain [Fig. 6.2(d)].

This geometry makes it challenging to implement mid-circuit measurements, because
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(a) (b) (c)

(d)

Figure 6.2: Mid-circuit measurements with shuttling.(a-c) Schematic illustration of
our mid-circuit measurement protocol. (a) To start, the ions are closely spaced in a 1D
chain above a surface trap. Coherent gates are implemented via a combination of individual
addressing beams (purple) and global beams (not shown). Both the coherent addressing
beams and the detection optics are aligned to ions at the same section of the trap. (b) By
tuning the electrodes of the surface trap, we can adjust the potential to deterministically
split the ion chain. Depending on the protocol, we split the chain into either two or three
individual segments. We optimize the rate of shuttling to minimize the perturbation of
the motional state. (c) Once the segments are sufficiently far away from one another, it is
possible to measure (blue beam) an individual segment without disturbing the coherence of
the remaining ions. After the measurement, the shuttling is reversed and the ion chain is
recombined. (d) Fluorescence images of an example shuttling protocol for a chain of N = 15
ions. At the start, the average spacing between ions is ∼ 4µm. At the end of the splitting
procedure, the distance between the two segments is ∼ 550µm um. The images show the
splitting up to a distance of ∼ 140µm, at which point the two sub-chains reach the edge of
the detection beam.

light scattered from nearby ions during a state-dependent fluorescence measurement can
destroy the state of the other ions. To overcome this issue, we vary the voltages on the trap
electrodes to split and shuttle the ion chain, thereby spatially isolating the ions not being
measured (Fig. 6.2a-c). Depending on the protocol, the ion chain is split into either two
or three segments. To measure the ions in a particular segment, we re-shape the electric
potential to align the target segment with the detection system. In addition, we calibrate
and correct for spatial drifts of the optical beams, variations of stray fields, and unwanted
phase accumulation during shuttling (see Methods sections 6.6.2, 6.6.5 for additional details).

In this demonstration, the qubits play the role of the prover and the classical control
system plays the role of the verifier. This allows us to compile the decisions of the verifier
into the classical controller prior to execution of the quantum circuit.
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Figure 6.3: Circuit and results of experiment impelmentations.(a),(d) depict the
circuit diagrams for the LWE- and factoring-based protocols, respectively. Details about
the implementation of U(A, b, x, y) and U(x, y) are provided in the Methods section 6.6.7.
In (d), the CNOT gate marked with an asterisk represents the operations needed to store
the parity of selected qubits in the ancilla. To reduce the impact of shuttling-induced gate
fidelity degradation, we compute the parity for all of the verifier’s possible selections and
then choose the relevant one once the prover receives the challenge. (b),(e): Experimentally
measured probabilities of passing the standard-basis (pA) and interference measurement (pB)
challenges for the LWE- and factoring-based protocols. These probabilities are compared
against the asymptotic classical limits (pA + 2pB ≤ 2 for LWE, derived in the Methods
section 6.6.10, and pA + 4pB ≤ 4 for factoring [115]). Results for both interactive and
delayed-measurement version of the protocols are presented. Numerical values of pA and pB
for each experiment, and the corresponding values of statistical significance, are provided
in the Methods section 6.6.1. (c),(f): The relative performance, R, of the experiments for
all possible branches. Certain branches (thick lines) are robust to phase errors and exhibit
similar performance for both interactive and delayed-measurement protocols.

6.4 Beating the classical threshold
As in a Bell test, even a classical prover can pass the verifier’s challenges with finite prob-
ability. If the classical prover cannot find a claw in the TCF (which is assumed to be the
case for sufficiently large problem sizes), this probability can be bounded by an asymp-
totic “classical threshold”—which a quantum prover must exceed to demonstrate advantage.
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(For a discussion of what it means that this threshold is “asymptotic” rather than abso-
lute, see the Methods section 6.6.9). For both protocols, this threshold is best expressed in
terms of the probabilities of passing the verifier’s “standard basis” and “interference” checks,
which we denote as pA and pB, respectively (see Methods section 6.6.3 for the definition
of the verifier’s checks). For the LWE-based protocol, the classical threshold is given by
pA + 2pB − 2 ≤ ϵ (derivation in Methods section 6.6.10); for the factoring-based protocol,
it is given by pA + 4pB − 4 ≤ ϵ. [115] In both cases, ϵ is a function which goes to zero
exponentially in the problem size. An intuition for the difference between the thresholds
is that the factoring-based protocol requires an additional round of interaction during the
“interference” test.

As depicted in Figure 6.3(b), we perform multiple instances of the LWE-based protocol
for different matrices A and noise vectors e. For each of the verifier’s possible choices, we
repeat the experiment ∼ 103 times to collect statistics. This yields the experimental proba-
bilities pA and pB, allowing us to confirm that the quantum prover exceeds the asymptotic
classical threshold in all cases. The statistical significance by which the bound is exceeded
(more than 6σ in all cases, see Table 6.2 in the Methods section 6.6.1) is shown in Figure
3(b). Figure 6.3(e) depicts the analogous results for the factoring-based protocol, where the
different instances correspond to different values of N . For all but N = 21, which requires
the deepest circuit, the results exceed the asymptotic classical bound with more than 4σ
statistical significance. We utilize an error-mitigation strategy based on excluding iterations
where w is measured to be invalid, i.e. not in the range of f (see 6.6.4); effectively, this
implements a post-selection which suppresses bit-flip errors [115].

To further analyze the performance of each branch of the interactive protocol, corre-
sponding to the verifier’s choices [Figs. 6.3(c,f)], we define the relative performance R =
(pexp−pguess)/(pideal−pguess) for each branch, where pideal is the probability that an error-free
quantum prover would pass, pguess is the probability that a random guesser would pass, and
pexp is the passing rate measured in the experiment. This criterion is a way of isolating
and evaluating the effect of noise on the success probabilities of each branch, by removing
effects such as the fact that an error-free run may still happen to get rejected by the verifier,
which is inherent to the protocol. In particular, for a perfect (noise-free) quantum prover
R = 1 always, and for a device so noisy that its outputs are uniformly random R = 0.
To probe the noise effects of the mid-circuit measurements, we implement two versions of
the protocols: one interactively (the normal protocol) and another with all measurements
delayed until the end of the circuit, and compare the relative performance between the two
cases. We emphasize that the delayed-measurement version is only a tool to probe our ex-
perimental system, and may be vulnerable to classical spoofing even if it were run at large
problem sizes where the other cryptographic assumptions hold—the interaction enabled by
mid-circuit measurements is crucial.

For the LWE-based protocol, there are two rounds of interaction, corresponding to the
two branches, I and II shown in Fig. 6.3(c), while for the factoring-based protocol there are
three rounds of interaction [Fig. 6.3(f)]. By comparing the relative performance between
the interactive and delayed-measurement versions of our experiment, we are able to probe a
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subtle feature of the protocols—namely, that certain branches are robust to additional de-
coherence induced by the mid-circuit measurements. Microscopically, this robustness arises
because these branches (thick lines, Figs. 6.3c,f) do not depend on the phase coherence be-
tween |x0⟩ and |x1⟩. In particular, this is true for the standard-basis measurement branches
in both protocols, and also for the branches of the factoring-based protocol where the ancilla
is polarized in the Z basis (see Methods section 6.6.6). Noting that mid-circuit measure-
ments are expected to induce mainly phase errors, one would predict that those branches
insensitive to phase errors should yield similar performance in both the interactive and
delayed-measurement cases. This is indeed borne out by the data.

6.5 Discussion and outlook
There are two main experimental challenges to demonstrating quantum computational ad-
vantage via interactive protocols: 1) integrating mid-circuit measurements into arbitrary
quantum circuits, with sufficiently high overall fidelity to pass the verifier’s tests, and 2)
scaling the protocols up to large enough problem sizes that it is classically infeasible to
break the cryptographic assumptions. In this work we have overcome the first obstacle,
successfully implementing two interactive cryptographic proofs of quantumness with high
enough fidelity to pass the verifier’s challenges. We leave the second challenge, of scaling
these protocols up, to a future work. We estimate that one should be able to perform a
cryptographic proof of quantum computational advantage using ∼ 1600 qubits (see Methods
section 6.6.13). Note that while this qubit count is comparable to some implementations of
Shor’s algorithm, the circuits are orders of magnitude smaller in gate count (O(n log n) vs.
O(n2 log n)) and depth [115]. Even with those smaller circuits, the challenge on near-term
devices will almost certainly remain the circuit depth; interestingly, recent advances suggest
that our interactive protocols can be performed in constant depth at the cost of a larger
number of qubits [147], [148]. Once this scaling is achieved in an experiment, it will demon-
strate directly-verifiable quantum computational advantage. This would mark a new step
forward from recent sampling experiments, which have demonstrated the system sizes and
fidelities necessary to make classical simulation extremely hard or impossible [15], [17], [18],
[20], [21], [32]–[35], [114] but have no method to directly and efficiently verify the output
(and moreover, practical strategies for a classical impostor to replicate the sampling are still
being explored [24]–[31]).

Our work also opens the door to a number of other intriguing directions. A clear next
step is to apply the power of quantum interactive protocols to achieve more than just quan-
tum advantage—for example, pursuing such tasks as certifiable random number generation,
remote state preparation and the verification of arbitrary quantum computations [39], [47],
[48]. We emphasize that unlike e.g. Bell-test based protocols for random number generation,
interactive proofs allow us to perform these cryptographic tasks with a single “black-box”
prover with which the verifier can only interact classically. This has the potential to allow
these types of protocols (including our cryptographic proofs of quantumness) to be performed
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on a remote prover, such as a quantum cloud service on the internet, enabling a wide variety
of practical applications. Finally, the advent of mid-circuit measurement capabilities in a
number of platforms [198], [200], [207], [208], enables the exploration of new phenomena
such as entanglement phase transitions [209]–[211] as well as the demonstration of coherent
feedback protocols including quantum error correction [151].

6.6 Additional proofs and data

6.6.1 Result data

In Tables 6.1 and 6.2 we present the numerical results for each configuration of the experi-
ment, along with the number of samples obtained (NA and NB), the measure of quantumness
q, and the statistical significance of the result (see Methods Section 6.6.11 for a description
of how the significance is calculated).

We note that for the computational Bell test protocol, the sample size NB is less than the
actual number of shots that passed postselection (ultimately leading to slightly less statistical
significance than might otherwise be expected). This is because the sample size varied for
different values of the verifier’s string r, yet we are interested in the passing rate pB averaged
uniformly over all r (not weighted by number of shots). To account for this, we simply took
the r-value with the fewest number of shots, and computed NB as if every r value had had
that sample size (even if some values of r had more).

We also note that in some cases the statistical significance denoted here may be higher
than that visually displayed in Figure 6.3 of the main text; this is because the contour lines
in that figure correspond to the configuration with the smallest sample size.

N Measurement
scheme pA pB NA NB Quantumness q Significance

8 interactive 0.952 0.777 4096 15267 0.061 4.3σ

8 delayed 0.985 0.837 2736 17361 0.334 24.1σ

15 delayed 0.934 0.798 2361 31353 0.127 10.0σ

16 delayed 0.927 0.790 3874 53550 0.087 8.8σ

21 delayed 0.864 0.700 2066 27944 -0.338 —

Table 6.1: Results for various configurations of the computational Bell test pro-
tocol. For this protocol q = pA + 4pB − 4.

6.6.2 Trapped ion quantum computer

The trapped ion quantum computer used for this study was designed, built, and operated
at the University of Maryland and is described elsewhere [206], [212]. The system consists
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Instance Measurement
scheme pA pB NA NB Quantumness q Significance

0 interactive 0.757 0.710 8000 13381 0.178 18.6σ

0 delayed 0.793 0.880 10000 9415 0.553 60.3σ

1 interactive 0.601 0.737 8000 7622 0.075 6.2σ

1 delayed 0.608 0.803 8000 7547 0.215 18.0σ

2 interactive 0.720 0.704 14000 15310 0.129 15.0σ

2 delayed 0.730 0.839 4000 3735 0.409 24.6σ

3 interactive 0.740 0.704 8000 15189 0.148 16.2σ

3 delayed 0.730 0.772 8000 7528 0.274 23.1σ

Table 6.2: Results for various configurations of the LWE-based protocol. For this
protocol q = pA + 2pB − 2.

of a chain of fifteen single 171Yb+ ions confined in a Paul trap and laser cooled close to
their motional ground state. Each ion provides one physical qubit in the form of a pair of
states in the hyperfine-split 2S1/2 ground level with an energy difference of 12.642821 GHz,
which is insensitive to magnetic fields to first order. The qubits are collectively initialized
through optical pumping, and state readout is accomplished by state-dependent fluorescence
detection [213]. Qubit operations are realized via pairs of Raman beams, derived from
a single 355-nm mode-locked laser [214]. These optical controllers consist of an array of
individual addressing beams and a counter-propagating global beam that illuminates the
entire chain. Single qubit gates are realized by driving resonant Rabi rotations of defined
phase, amplitude, and duration. Single-qubit rotations about the z-axis, are performed
classically with negligible error. Two-qubit gates are achieved by illuminating two selected
ions with beat-note frequencies near motional sidebands and creating an effective Ising spin-
spin interaction via transient entanglement between the two ion qubits and all modes of
motion [215]–[217]. To ensure that the motion is disentangled from the qubit states at the
end of the interaction, we used a pulse shaping scheme by modulating the amplitude of the
global beam [218].

6.6.3 Verifier’s checks

In this section we explicitly state the checks performed by the verifier to decide whether to
accept or reject the prover’s responses for each run of the protocol. We emphasize that these
checks are performed on a per-shot basis, and the empirical success rates pA and pB are
defined as the fraction of runs (after postselection, see below) for which the verifier accepted
the prover’s responses.

For both protocols, the “A" or “standard basis" branch check is simple. The prover has
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already supplied the verifier with the output value w; for this test the prover is expected to
measure a value x such that f(x) = w. Thus in this case the verifier simply evaluates f(x)
for the prover’s supplied input x and confirms that it is equal to w.

For the “B" or “interference" measurement, the measurement scheme and verification
check is different for the two protocols. For the LWE-based protocol, the interference mea-
surement is an X-basis measurement of all of the qubits holding the input superposition
|x0⟩+ |x1⟩. This measurement will return a bitstring d of the same length as the number of
qubits in that superposition, where for each qubit, the corresponding bit of d is 0 if the mea-
surement returned the |+⟩ eigenstate and 1 if the measurement returned the |−⟩ eigenstate.
The verifier has previously received the value w from the prover and used the trapdoor to
compute x0 and x1; the verifier accepts the string d if it satisfies the equation

d · x0 = d · x1 (6.1)

where (·) denotes the binary inner product, i.e. a · b =
∑

i aibi mod 2. It can be shown
that a perfect (noise-free) measurement of the superposition |x0⟩+ |x1⟩ will yield a string d
satisfying Eq. 6.1 with probability 1.

The interference measurement for the computational Bell test involves a sequence of two
measurements (in addition to the first measurement of the string w). The first measurement
yields a bitstring d as above. After performing that measurement, the prover holds the single-
qubit state (−1)d·x0 |r · x0⟩+ (−1)d·x0 |r · x0⟩, where (·) is the binary inner product as above
and r is a random bitstring supplied by the verifier. This state is one of {|0⟩ , |1⟩ , |+⟩ , |−⟩},
and is fully known to the verifier after receiving d (via use of the trapdoor to compute x0 and
x1). The second measurement is of this single qubit, in an intermediate basis Z+X or Z−X
chosen by the verifier. For any of the four possible states, one eigenstate of the measurement
basis will be measured with probability cos2(π/8) ≈ 85% (with the other having probability
∼ 15%), just as in a Bell test. The verifier accepts the measurement result if it corresponds to
this more-likely result; an ideal (noise-free) prover will be accepted with probability ∼ 85%
(see Figure 6.3 of the main text).

6.6.4 Post-selection

Both the factoring-based and LWE-based protocols involve post-selection on the measure-
ment results throughout the experiment.

For the factoring-based protocol, this post-selection is performed on the measured value
of the output register w. Due to quantum errors in the experiment, in practice it is possible
to measure a value of w that does not correspond to any inputs of the TCF—that is, there
do not exist x0, x1 for which f(x0) = f(x1) = w, due to noise. Because such a result would
not be possible without errors, measuring such a value indicates that a quantum error has
occurred [115]. Thus, we perform post-selection by discarding all runs for which the measured
value w does not have two corresponding inputs.

On the other hand, for the LWE protocol, we post-select in order to satisfy the conditions
for the adaptive hardcore bit property to hold, as without this property, the protocol could
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Instance Delayed Measurement Interactive Measurement

0 3753/4000 13381/14000
1 7547/8000 7622/8000
2 3735/4000 15310/16000
3 7528/8000 15144/16000

Table 6.3: Fractions of runs kept during post-selection for the LWE-based pro-
tocol, in the “interference” measurement branch. All runs are kept for the standard
basis measurement.

N Interactive Branch Runs kept/Total

8 Yes A 4096/9000
8 Yes B, r=01 5093/12000
8 Yes B, r=10 5089/12000
8 Yes B, r=11 5492/12000
8 No A 2736/6000
8 No B, r=01 5787/12000
8 No B, r=10 5818/12000
8 No B, r=11 5865/12000
15 No A 2361/6000
15 No B, r=001 4636/12000
15 No B, r=010 4532/12000
15 No B, r=011 4666/12000
15 No B, r=100 4496/12000
15 No B, r=101 4727/12000
15 No B, r=110 4479/12000
15 No B, r=111 4673/12000

N Interactive Branch Runs kept/Total

16 No A 3874/6000
16 No B, r=001 7842/12000
16 No B, r=010 7847/12000
16 No B, r=011 7732/12000
16 No B, r=100 7936/12000
16 No B, r=101 7870/12000
16 No B, r=110 7841/12000
16 No B, r=111 7650/12000
21 No A 2066/6000
21 No B, r=001 3992/12000
21 No B, r=010 4273/12000
21 No B, r=011 4137/12000
21 No B, r=100 4182/12000
21 No B, r=101 4193/12000
21 No B, r=110 4261/12000
21 No B, r=111 4221/12000

Table 6.4: Fraction of runs kept during postselection for each branch of the
factoring-based protocol.
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be susceptible to attacks. In particular, the adaptive hardcore bit property requires that the
result obtained from measuring the x register using the “interference” measurement scheme
be a nonzero bitstring [39]. Hence, we simply post-select on this condition for the LWE case.
Tables 6.3 and 6.4 explicitly show how many runs are kept using each post selection scheme.

We note that in both cases, post-selection does not affect the soundness of the protocols.
We only require that a non-negligible fraction of runs pass post-selection (to give good
statistical significance for the results). This is indeed the case for our experiment, as can be
seen in Tables 6.3, 6.4, as well as the statistical significance of the results in Tables 6.1, 6.2.

6.6.5 Shuttling and mid-circuit measurements

We control the position of the ions and run the split and shuttling sequences by changing
the electrostatic trapping potential in a microfabricated chip trap [219] maintained at room
temperature. We generate 40 time-dependent signals using a multi-channel DAC voltage
source, which controls the voltages of the 38 inner electrodes at the center of the chip and
the voltages of two additional outer electrodes. Owing to the strong radial confining potential
used (with secular trapping frequencies near 3 MHz), the central electrodes’ potential affects
predominantly the axial trapping potential, and in turn, generates movement predominantly
along the linear trap axis. To maintain the ions at a constant height above the trap surface,
we simulate the electric field based on the model in Ref. [219], and compensate for the
average variation of its perpendicular component by controlling the voltages of the outer two
electrodes.

In the first sequence, we split the 15-ion chain into two sub-chains of 7 and 8 ions, and
shuttle the 8-ion group to x = 0.55 mm away from the trap center at x = 0. We then
align the 7-ion chain with the individual-addressing Raman beams for the first mid-circuit
measurement. For the LWE-based protocol, we then reverse the shuttling process and re-
merge the ions to a 15-ion chain, completing the circuit and performing a final measurement.
For the factoring-based protocol, we shuttle the 8-ion sub-chain to the trap center and the 7-
ion sub-chain to x = −0.55 mm. We then split this chain into 5- and 3-ion sub-chains, shuttle
the 3-ion sub-chain to x = 0.55 mm, and align the 5 ions at the trap center with the Raman
beams to perform additional gates and a second mid-circuit measurement. Finally, we move
away the measured ions and align the 3-ion group to the center of the trap to complete
the protocol. Reversing the sequence then prepares the ions in their initial state. For each
protocol, all branches use the same shuttling sequences but differ in the qubit assignment and
the realized gates. The mid-circuit measurement duration was experimentally determined
prior to the experiment by maximizing the average fidelity of a Ramsey experiment using
single-qubit gates, approximately optimizing for the trade-off between efficient detection of
each sub-chain and stray light decoherence.

To enable efficient performance of the split and shuttling sequences we numerically sim-
ulate the electrostatic potential and the motional modes of the ions that are realized in the
sequences. We minimize heating of the axial motion from low-frequency electric-field noise
by ensuring that the calculated lowest axial frequency does not go below 100 KHz. We also
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minimize the frequency of ions loss due to collisions with background gas by maintaining a
calculated trap depth of at least 20 meV for each of the sub-chains throughout the shuttling
sequences. The simulations enable efficient alignment of the sub chains with the Raman
beams, taking into account the variation of the potential induced by all electrodes.

We account and correct for various systematic effects and drifts which appear in the
experiment. To eliminate the effect of systematic variation of the optical phases between the
individual beams on the ions, we align each ion with the same individual beam throughout
the protocol. Prior to the experiment, we run several calibration protocols which estimate
the electrostatic potential at the center of the trap through a Taylor series representation up
to the fourth order, estimating the dominant effect of stray electric fields on the precalculated
potential. We then cancel the effect of these fields using the central electrodes during the
alignment and split sequences, as these sequences are most sensitive to the exact shape of the
actual electrostatic potential. Additionally, we routinely measure the common-mode drift of
the individual addressing optical Raman beams along the linear axis of the trap and correct
for them by automatic repositioning of the ions achieved by varying the potential.

During shuttling, the ions traverse an inhomogeneous magnetic field and consequently,
each ion spin acquires a shuttling-induced phase ϕ(i)

s which depends on its realized trajec-
tory. We calibrate this by performing a Ramsey sequence in which each qubit is put in a
superposition of (|0⟩i + |1⟩i)/

√
2 before shuttling, and after the shuttling R

(i)
x (π/2)R

(i)
z (ϕ)

gates are applied, with ϕ scanned from 0 to 2π. Fitting the observed fringe for each ion
enables estimation of the phases ϕ(i)

s , which are corrected in the protocols by application of
the inverse operation R(i)

z (−ϕ(i)
s ) after shuttling.

6.6.6 Circuit construction of the factoring-based protocol

In this section, we describe the procedure for preparing the quantum superposition of all the
claws in the factoring-based protocol, as shown in Fig. 6.3(a) of the main text.

This is achieved by generating∑
0≤x≤N/2

1√
2N/2

|x⟩ |f(x) = x2 mod N⟩ . (6.2)

and then measuring the y = |f(x)⟩ register. We calculate f(x) using a unitary U(x, y) to
encode the function into the phase of the y register and applying a inverse quantum Fourier
transform (QFT†) to extract the result.

To start, we apply Hadamard gates to all qubits to prepare a uniform superposition of
all the possible bit strings for the x and y registers:

∑
0≤x≤N/2,0≤y≤N

α |x⟩ |y⟩ , (6.3)

where α is the normalization factor.
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Next, we evolve the state with the unitary U(x, y) = e2πi
x2y
N . Since the phase has period

2π, the unitary is equivalent to U(x, y) = e2πi
x2y mod N

N . We now show how to efficiently
implement U(x, y) = e2πi

x2y
N on the ion trap quantum computer.

First, note the multiplication in the phase can be expressed as a sum of bit-wise multi-
plication

U(x, y) =
∏
i,j,k

exp

(
2πi

2i+j+k

N
xixjyk

)
. (6.4)

This bit-wise multiplication can be expressed using Pauli operators:∏
i,j,k

exp

(
2πi

2i+j+k−3

N
(1− σ(i)

z )(1− σ(j)
z )(1− σ(k)

z )

)
. (6.5)

We then organize the operators into three terms:

U(x, y) =
∏
i,j,k

exp
(
αi,j,kσ

(i)
z σ

(j)
z σ(k)

z

)∏
i,j

exp
(
βi,jσ

(i)
z σ

(j)
z

)∏
i

exp
(
γiσ

(i)
z

)
. (6.6)

We use α’s, β’s, and γ’s to represent the phases generated by these terms, which can be
calculated from Eq. 6.5. The third term contains single-qubit Z rotations that are imple-
mented efficiently as software-phase advances. The ZZ interactions in the second term are
implemented as XX gates sandwiched between single qubit rotations. The first term in-
cludes three-body ZZZ interactions, which can be decomposed using ZZ interactions using
the following relation:

exp(−π
4
iσ(i)

y σ
(j)
y ) exp(iθσ(j)

x σ(k)
x ) exp(i

π

4
σ(i)
y σ

(j)
y ) = exp(−iθσ(i)

y σ
(j)
z σ(k)

x ) (6.7)

This decomposition enables efficient construction of the following cascade of ZZZ inter-
actions:

exp(−iθ1σ(a)
y σ(b)

z σ(1)
x ) exp(−iθ2σ(a)

y σ(b)
z σ(2)

x ) · · · exp(−iθnσ(a)
y σ(b)

z σ(n)
x ) = (6.8)

exp(−π/4iσ(a)
y σ(b)

y ) exp(iθ1σ
(b)
x σ(1)

x ) · · · exp(iθnσ(b)
x σ(n)

x ) exp(iπ/4σ(a)
y σ(b)

y ) (6.9)

which are efficiently implemented using the nativeXX interaction and single-qubit rotations.
Using the decomposition above, we can implement the first term in Eq. 6.6 using the

circuit shown in Fig. 6.4.
With this term implemented, we complete the construction of the full unitary U(x, y).

After applying the unitary, we obtain the state

α
∑

0≤x≤N/2

|x⟩
∑

0≤y≤N

e2πi
x2y mod N

N |y⟩ . (6.10)
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Figure 6.4: Circuit compilation of products of three-body-Pauli interactions. We
use this optimized circuit to implemente the first term in Eq. 6.6.

We then apply the inverse quantum Fourier transform QFT † to the y register, which
gives us:

α
∑

0≤x≤N/2

|x⟩ |y = x2 mod N⟩ (6.11)

Next, we measure the y register to find an output w, and the x-register contains the super-
position of a colliding input pair.

The number of qubits used to represent y in experiments are 3, 4, 4, and 5 for N = 8,
N = 15, N = 16, and N = 21, respectively. The number of qubits used to represent x in
experiments equals the length of the r string in Table 6.4.

6.6.7 Circuit construction of the LWE-based protocol

In this section, we describe the procedure for implementing the circuit U(A, b, x, y), displayed
in Fig. 6.3(d). Here, the matrix A and vector y are classical inputs, and the bit b and vector x
are quantum values held in the qubits to which the unitary is applied. The circuits evaluate
the function f(b, x) = ⌊Ax+ b · y⌉ in superposition, where ⌊·⌉ denotes a rounding operation
corresponding to taking the most significant bit of each component in the vector Ax+b·y. (It
should be noted that this specific function, which uses rounding, differs from the TCF used
by Brakerski et al. [39], but is nevertheless still a TCF [147].) This TCF is based on the LWE
problem: for a secret vector s and “noise” vector e, find s (or equivalently e) with knowledge
of only A and y = As + e. The LWE assumption states that doing so is cryptographically
hard. It is straightforward to see that finding claws in the function f is as hard as breaking
the LWE assumption, by observing that for a colliding pair ((0, x0), (1, x1)), x1 = x0 + s (up
to the noise vector e, whose effect disappears due to the rounding).

In our implementation, the matrix A ∈ Zm×n
q and vector s ∈ {0, 1}n are sampled uni-
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formly at random by the verifier1. The vector e ∈ Zm
q is sampled from a discrete Gaussian

distribution (see Brakerski et al. [39] for more details on the parameter choices). The verifier
constructs y = As+ e ∈ Zm

q and sends A and y to the prover.
To perform the coherent evaluation, the prover will use three registers (for the b and x

inputs, as well as for the output of the TCF) to create the superposition state as well as a
fourth ancilla register, which will be used to perform the unitary U(A, b, x, y). The prover
starts by applying a layer of Hadamard gates to all input qubits and the ancilla register
(that were initialized as |0⟩). The resulting state will be

∑
b∈{0,1}

∑
x∈Zn

q

∑
a∈Zq

α |b⟩ |x⟩ |a⟩ |0⟩ (6.12)

for some normalization constant α and where the third register is the ancilla register and
the last register is the output register. In this output register, the prover must coherently
add ⌊Ax + b · y⌉. As Ax + b · y is an m-component vector, we will explain the prover’s
operations, at a high level, for each component of the vector. For the i’th component of this
vector, the prover first computes the inner product modulo q between the i’th row of A and
x and places the result in the ancilla register. Since the prover has a classical description of
A, this will involve a series of controlled operations between the x register and the ancilla
register. Similar to the factoring case, this arithmetic operation is easiest to perform in the
Fourier basis, which is why Hadamard gates are applied to the ancilla register. Once the
inner product has been computed, the prover will perform a controlled operation between the
b qubit and the ancilla register in order to add the i’th component of y. Finally, the prover
will “copy” the most significant bit of the result into the output register. This is done via
another controlled operation. The prover then uncomputes the result in the ancilla, clearing
that register. In this way, the i’th component of ⌊Ax+ b · y⌉ has been added into the output
register. Repeating this procedure for all components will yield the desired state∑

b∈{0,1}

∑
x∈Zn

q

α′ |b⟩ |x⟩ |0⟩ |⌊Ax+ b · y⌉⟩ (6.13)

with normalization constant α′.
Having given the high level description, let us now discuss in more detail the specific

circuits of the current implementation. From the above analysis, we can see that the total
number of qubits is N = 1 + n log2(q) + log2(q) +m. In the instance for this experiment,
we chose m = 4, n = 2, q = 4, resulting in N = 11 qubits. The first register contains |b⟩
which requires only one qubit. In the second register, the vector x = (x0, x1) consists of two
components modulo 4, which is encoded in binary with four qubits as |x⟩ = |x11, x12, x21, x22⟩.
The third register, the ancilla, is one modulo 4 component and will thus consist of two qubits.

1Technically, the matrix A is sampled together with the TCF trapdoor. However, as explained in [39],
the distribution from which the matrix is sampled is statistically close to a uniform distribution over Zm×n

q
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Lastly, in the fourth register, we store the result of evaluating the function, which requires
another four qubits. As mentioned, the matrix A and the vector y are specified classically.
In the experiment, we considered four different input configurations, corresponding to four
different choices for A, s and e. These choices are explicitly described later in the appendix.

Figure 6.5: Structure of circuits for the LWE protocols. Circuit used to “copy” the
most significant bit of the result from the ancilla into the output register, adding the i’th
component of ⌊Ax + b · y⌉. Here, V represents the unitary used to compute ⟨ai, x⟩ + b · yi,
in modular arithmetic, for the i’th row ai of the matrix A. Additionally, yi denotes the i’th
entry of the vector y = As+ e. Also, note that the target qubit of the CNOT in the diagram
is the i’th qubit. The step shown is repeated for each row of A, indexed by i.

To detail the operations implemented, as discussed previously, the prover first puts the
ancilla register into the Fourier basis using the quantum Fourier transform (QFT). This
allows them to more easily compute ⟨ai, x⟩+ b · yi in the ancilla register, where ai is the i’th
row of the matrix A and ⟨·, ·⟩ denotes the inner product modulo q. The explicit rotation
gates to compute this in the Fourier basis are given in Fig. 6.6. After computing this for one
row ai, the prover converts the ancilla back into the computational basis and “copies” the
most significant bit stored in the ancilla register into the output register, using a CNOT gate,
to compute the rounding function. This completes the evaluation of the function for one bit.
In order to reuse the qubits in the ancilla register, the prover then reverses this computation
and repeats for each row of the matrix A. This process of evaluating the function and
reversing that computation is depicted in Fig. 6.5.

Finally, after completing the evaluation of the TCF, the prover measures the output
register to recover the rounded result of ⌊Ax + b · y⌉ for a certain value of x. The prover
will then measure the b and x registers in either the Z basis or X basis, according to the
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Figure 6.6: Example of circuit for V from Fig. 6.5. The explicit rotation gates used
to implement the unitary V from Fig. 6.5 for the case of q = 4. Here, aij denotes the entry
in the i’th row and j’th column of the matrix A and yi denotes the i’th entry of the vector
y = As + e. The output register is omitted as there are no operations performed on it in
this section of the circuit. The step shown is repeated for each row of A, indexed by i.

challenge issued by the verifier. Should the verifier request measurements in the X basis,
the prover applies Hadamard gates on all qubits in the b and x registers before measuring in
the computational basis.

6.6.8 Instances of LWE Implemented

Instance A⊺ e⊺ (As+ e)⊺

0

(
0 2 0 1

2 0 1 2

) (
0 1 0 0

) (
0 3 0 1

)
1

(
0 2 3 2

2 3 0 0

) (
0 0 0 1

) (
0 2 3 3

)
2

(
2 0 0 1

0 3 2 1

) (
1 0 1 0

) (
3 0 1 1

)
3

(
0 1 3 0

3 0 0 2

) (
1 0 1 0

) (
0 1 3 1

)
Table 6.5: Details of the LWE instances. Note that the entries are transposed and for
all instances we use s⊺ =

(
0 1

)
.

Here, we explicitly detail the LWE instances that were used in the experiment. Recall
that such an instance is defined by A, s, and e, where A ∈ Zm×n

q , s ∈ {0, 1}n, and e ∈ Zm
q for

integers m,n, q ∈ Z. In this experiment, we used m = 4, n = 2, q = 4 for all of the instances.
Table 6.5 displays the explicit matrices and vectors used.
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6.6.9 Discussion of asymptotic classical threshold

In cryptography, showing that a new protocol is secure for practical use (meaning, in our
case, that the proof cannot be spoofed by a classical prover) follows two broad steps: 1)
proving that it is secure asymptotically (showing that the computational cost of cheating
is at least superpolynomial in the problem size), and 2) picking a finite set of parameters
such that cheating is not possible under certain classical resources (computational power and
time, usually). What particular limitations to set on the resources available to the classical
cheater is ultimately up to the user. In this section, we attempt to make precise exactly
which statements are asymptotic (step 1), and how these statements make the jump in step
2 to finite, real parameters.

The first asymptotic statement, which is perhaps the most obvious, is that finding claws
of the TCF is hard. In the theory papers upon which this work is based, this is shown by
reducing the problem of finding claws to related problems, about which there exist standard
cryptographic assumptions. [39], [115] In particular, the assumptions are that the factoring
and LWE problems have superpolynomial classical complexity. As discussed above, when
using the test in practice we would pick finite parameters in a way that finding a claw is
infeasible for the set of classical resources we wish our quantum computer to outcompete (for
a rigorous demonstration of quantum advantage, probably a large supercomputer with ample
runtime). Importantly, the reduction between the hardness of finding claws and breaking
the cryptographic assumption is not in any sense asymptotic: for both TCFs, if a machine
can find claws for a specific, finite set of parameters, they can directly use those claws to
break the cryptographic assumption in practice. Therefore if the cryptographic assumption
holds for a finite set of parameters, we can be sure that the claw-freeness does as well.

The second asymptotic statement that appears in the analysis of these protocols is in
regard to the probability that a classical cheater passes a single iteration of the test. In
Section 6.4 of the main text, we discuss the “classical thresholds,” which must be exceeded
to demonstrate quantum capability. To be very precise about what we mean by this, we
reproduce exactly what the theorems underlying these protocols state: if a classical prover’s
true success probabilities (not the empirically determined ones, which are subject to statis-
tical fluctuation) exceed the given bound by a non-negligible amount, that prover could be
used as a subroutine in a larger program which finds a claw in the TCF in polynomial time.
Thus, if it is not possible for a classical prover with certain resources to find a claw (in a TCF
with some specific parameters), it is provably also not possible for a classical prover with
similar resources to non-negligibly exceed the threshold. There are two asymptotic portions
of this statement: the polynomial time in which the larger program extracts a claw using the
prover as a subroutine (which is the reason for the word “similar” in the previous sentence),
and in fact the word “negligible.” Negligible has a technical definition in cryptography, which
is the sense in which we use it here. It means that a value (in this case the amount by which
the threshold can be exceeded) is bounded by a function which goes exponentially to zero in
the problem size. The precise form of this exponential is not intended to be determined, but
instead the exponential decay is used to argue that the negligible function is “essentially”
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zero for any reasonable problem size that would be used in practice.
It is worth noting that for the small problem sizes we implement in this work, there is

one instance in which this negligible function would meaningfully affect the classical success
threshold—and we modify the protocol slightly to account for this. In the x2 mod N (Rabin’s
function) protocol, the value r sent by the verifier is supposed to be a uniformly random
bitstring. If r happens to be all zero, the product r · x, whose value is supposed to be
cryptographically hard to guess, is simply zero. This is not an issue for problem sizes that
would be used for a full-scale test in practice, because an all-zero r is extremely unlikely
to occur if r is of length several hundred bits. But for our smaller experiments with r of
only a few bits, the all-zero string represents a sizable fraction of possible r. To prevent
this from affecting the results, we simply choose our r from the set of non-zero bitstrings
rather than all bitstrings. We note that excluding the all zero string helps us better resolve
the experiment’s performance, too: when r = 0n the qubit measured in the last step of the
protocol never interacts with any of the other qubits throughout the whole circuit, so the
measurement result has nothing to do with the fidelity of the TCF circuit!

To close this discussion, it is worth taking a broader perspective and considering how the
field of cryptography functions in general. Asymptotic proofs in cryptography are used to
show that for any cheating machine with finite resources, the problem can always be made
large enough to be hard in practice—and that the hardness grows quickly enough that this is
hopefully not an unreasonable pursuit. But ultimately, the question of how large the problem
needs to be is an empirical one: experts build the best possible algorithms and hardware they
can to attempt to break the assumption, and then the parameters are set to be larger than
the largest problem size that can be broken this way (usually with an extra buffer added
to secure against improvements in the attacks). In our case, the costs of breaking both
factoring and LWE have been extensively explored, and the practical parameters needed for
their security against current classical computing power are well understood. As described
above, because there are no asymptotic statements in the reduction from the TCF to the
underlying cryptographic assumptions, these parameters can be directly used to ensure that
finding claws is hard in practice. As described above, the precise relationship between the
hardness of exceeding the thresholds and finding claws does rely on asymptotics, but the
fact that the asymptotic function appearing in the threshold is shown to decay exponentially
suggests strongly that this should not be an issue in practice.

6.6.10 Quantum-classical threshold of LWE based protocol

In this section, we state and prove the classical threshold for the LWE-based protocol. The
corresponding proof for the factoring-based protocol is contained in the theory manuscript
that first presented that protocol. [115]

Below, the security parameter λ is used in the standard cryptographic sense, as a measure
of the “problem size”—it can be made larger to increase security, or smaller to improve
efficiency. The specifics of how each parameter of the LWE problem is defined as a function
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of λ can be found in the definition of the LWE-based TCF, in the theory work that originally
proposed it. [39]

Proposition 1. For any classical prover, the probabilities that they pass branches A and B,
pA and pB, must obey the relation

pA + 2pB − 2 < ϵ(λ) (6.14)

where ϵ is a negligible function of the security parameter λ.

Proof. We first want to find the probability that the classical prover both responds correctly
for Branch A and, for the same output w that they committed to the verifier, Branch B is
also correct with probability greater than 1/2+µ(λ), where µ is a non-negligible function of
the security parameter λ. Let this second probability be denoted as

pgood ≡ Pr
w
[pB,w > 1/2 + µ(λ)] (6.15)

By a union bound, we arrive at a bound on the desired probability

Pr[A correct and pB,w > 1/2 + µ(λ)] > pA + pgood − 1 (6.16)

Now, we wish to write pgood in terms of pB. Let S be the set of w values for which pB,w >
1/2 + µ(λ). By definition, we know that with probability pgood, the prover samples a w ∈ S
so that they pass the verifier’s Branch B test with probability at least 1/2 + µ(λ) and at
most 1. Similarly, we know that with probability 1 − pgood, the prover samples a w /∈ S so
that they pass the verifier’s Branch B test with probability at most 1/2. Hence, overall we
see that the probability that the prover passes Branch B is at most the convex mixture of
these two cases, i.e.

pB < 1 · pgood + 0.5 · (1− pgood) (6.17)

Solving for pgood, we then obtain
pgood > 2pB − 1 (6.18)

Substituting this into Equation 6.16, we have

Pr[A correct and pB,w > 1/2 + µ(λ)] > pA + 2pB − 2 (6.19)

However, notice that this probability on the left hand side is the probability of breaking the
adapative hardcore bit property, which we know [39] must have

Pr[A correct and pB,w > 1/2 + µ(λ)] < ϵ(λ) (6.20)

where ϵ is a negligible function. Thus, combining this with Equation 6.19, we obtain the
desired inequality

pA + 2pB − 2 < ϵ(λ) (6.21)
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6.6.11 Computation of statistical significance contours

Here we describe the computation of the contour lines denoting various levels of statistical
significance in Figure 6.3(b,e) of the main text. Recall the probabilities pA and pB introduced
in Section 6.4, which denote a prover’s probability of passing the standard basis and inter-
ference test, respectively. Assuming the cryptographic soundness of the claw-free property
of the TCF, and in the limit of large problem size, any classical cheating strategy must have
true values of pcA and pcB that obey the bound pcA + 2pcB − 2 < 0 for the LWE protocol and
pcA + 4pcB − 4 < 0 for the factoring-based protocol. To find the statistical significance of a
pair of values pA and pB measured from an (ostensibly) quantum prover, we consider the
null hypothesis that the data was generated by a classical cheater (which obeys the bounds
above), and compute the probability that the given data could be generated by that null
hypothesis. In particular, since the bounds above exclude a region of a two-dimensional
space, we consider an infinite “family” of null hypotheses which lie along the boundary, and
define the overall statistical significance of measuring pA and pB to be the minimum of the
statistical significances across the entire family of null hypotheses—that is, we define it as
the significance with respect to the least rejected null hypothesis.

To compute the statistical significance of a result (pA, pB) with respect to a particular
null hypothesis (pcA, p

c
B), we define the “quantumness” q of an experiment as q(pA, pB) =

pA + 4pB − 4 for the factoring-based protocol and q(pA, pB) = pA + 2pB − 2 for the LWE
protocol. Letting NA and NB be the number of experimental runs performed for each branch
respectively, we define the joint probability mass function (PMF) as the product of the PMFs
of two binomial distributions B(NA, p

c
A) and B(NB, p

c
B). Mathematically the joint PMF is

f(kA, kB; p
c
A, p

c
B, NA, NB) =

(
NA

kA

)(
NB

kB

)
(pcA)

kA(pcB)
kB(1− pcA)NA−kA(1− pcB)NB−kB (6.22)

where kA = pANA and kB = pBNB are the “count” of passing runs for each branch respec-
tively. Finally, we compute the statistical significance of a result (pA, pB) as the probability of
achieving quantumness measure of at least q′ = q(pA, pB). Under a null hypothesis (pcA, pcB),
this is the sum of the PMF over all kA, kB for which q(kA/NA, kB/NB) > q′.

In practice, for the contour lines of Figure 6.3(b,e), we begin with a desired level of
statistical significance (say, 5σ), and given the sample sizes NA and NB we compute the
value of q′ that would achieve at least that significance over all null hypotheses inside the
classical bound.

6.6.12 Additional instances of factoring-based protocols

In Fig. 6.3(f), we show the relative performance of the factoring-based protocol for N = 8,
performed both interactively and with delayed measurement. In Fig. 6.7 we display the
relative performance for N ∈ {15, 16, 21} (for which experiments were run with delayed
measurement only).
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Figure 6.7: Extra implementations of the factoring-based protocols. Other than the
implementations of N=8 instances, we also experimented with N=15,16, and 21 instances of
the factoring-based protocols, with delayed measurement.

6.6.13 Estimate of resources required to achieve quantum
advantage

For a conclusive demonstration of quantum advantage, we desire the quantum machine to
perform the protocol significantly faster than the amount of time a classical supercomputer
would require to break the trapdoor claw-free function—ideally, orders of magnitude faster.
To achieve this, we must set the parameters of the cryptographic problem to sufficiently large
values. A major benefit of using protocols based off of established cryptographic assump-
tions (like factoring and LWE) is that the classical hardness of breaking these assumptions is
extremely well-studied, due to the implications for security. [136] Thus the most straightfor-
ward way to choose parameters for our tests is to rely on publicly-available recommendations
for cryptographically secure key sizes, which are used in practice. These parameter settings
are designed to be not just slow for classical machines, but infeasible even for classical ma-
chines years from now—and thus certainly would constitute a definitive demonstration of
quantum advantage. However, setting the parameters to these values may be considered
overkill for our purposes, especially since we’d like the problem size to be as small as possi-
ble in order to make the protocols maximally feasible on near term quantum devices. With
these considerations, in this section we provide two estimates for each protocol: we begin
by providing estimates for smaller problem sizes that still would demonstrate some level of
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quantum advantage, and then give estimates based on cryptographic parameters.
We conservatively estimate that a future quantum device running the protocols investi-

gated in this work at scale would complete the protocols on a time scale of at most hours.
Thus, to demonstrate quantum advantage by several orders of magnitude, we desire to set
the parameters such that a classical supercomputer would require time on the order of thou-
sands of hours to break the TCF. In 2020, Boudot et al. reported the record-breaking
factorization of a 795-bit semiprime [220]. The cost of the computation was about 1000
core-years, meaning that a 1000-core cluster would complete it in a year. We consider this
sufficient cost to demonstrate quantum advantage. We emphasize also that factoring is one
of the most well-studied hard computational problems; the record of Boudot et al. is the
product of decades of algorithm development and optimization and thus it is unlikely that
any innovations will drastically affect the classical hardness of factoring in the near term.
The computational Bell test protocol using a 795-bit prime could be performed using only
about 800 qubits by computing and measuring the bits of the output value w one-by-one;
however the gate count and circuit depth can be dramatically reduced by explicitly storing
the full output value w, requiring roughly 1600 qubits total [115]. Because it is so much
more efficient in gate count, we use the 1600 qubit estimate as the space requirement to
demonstrate quantum advantage with the computational Bell test protocol.

For LWE, estimating parameters for the same level of hardness (1000 core-years) is dif-
ficult to do exactly, because to our knowledge that amount of computational resources has
never been applied to breaking an LWE instance. However, we may make a rough esti-
mate. There is an online challenge (https://www.latticechallenge.org/lwe_challenge/
challenge.php) intended to explore the practical classical hardness of LWE, in which users
compete for who can break the largest possible instance. As of this writing, the largest
instances which have been solved use LWE vectors of about 500-1000 bits (depending on the
noise level of the error vector), but the computational cost of these calculations was only of
order 0.5 core-years. To require 1000 core-years of computation time, we estimate that the
LWE vectors would need to be perhaps 1000-2000 bits in length; by not explicitly storing
the output vector w but computing it element-by-element (similar in principle to the scheme
for evaluating x2 mod N using only log(N) + 1 qubits [115]) it may be possible to perform
the LWE protocol using a comparable number of qubits to the bit length of one LWE vector.

We now provide estimates for cryptographic parameters; that is, parameters for which it
expected to be completely infeasible for a classical machine to break the trapdoor claw-free
function. For the factoring-based protocol, we may apply NIST’s recommended key sizes
for the RSA cryptosystem, whose security relies on integer factorization. NIST recommends
choosing a modulus N with length 2048 bits. By using circuits optimized to conserve qubits,
it is possible to evaluate the function x2 mod N using only log(N) + 1 qubits, yielding a
total qubit requirement of 2049 qubits [115]. However, the circuit depth can be improved
significantly by including more qubits; a more efficient circuit can be achieved with roughly
2 log(N) ∼ 4100 qubits. Because LWE is not yet broadly used in practice like RSA is, NIST
does not provide recommendations for key sizes in its documentation. However, we can
use the estimates of Lindner and Peikert[221] to find parameters which are expected to be

https://www.latticechallenge.org/lwe_challenge/challenge.php
https://www.latticechallenge.org/lwe_challenge/challenge.php
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infeasible classically. In Fig. 3 of that work, the authors suggest using LWE vectors in Zn
q

with n = 256 and q = 4093 for a “medium” level of security. Vectors with these parameters
are n log(q) ∼ 3072 bits long. To store both an input and output vector would thus require
roughly ∼ 6200 qubits. By repeatedly reusing a set of qubits to compute the output vector
element-by-element the computation could be performed using roughly 3100 qubits.
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Chapter 7

Quantum fast multiplication with very
few qubits

7.1 Introduction
Quantum circuits for coherently performing arithmetic on superpositions of values have been
a subject of intense study since the first quantum algorithms for number theory problems
were discovered in the mid-1990s. The most famous such algorithms are Shor’s algorithms
for integer factorization and discrete logarithm, because of their potentially catastrophic
effect on digital security. [119] Among other applications, quantum arithmetic has recently
become useful also for the implementation of protocols to achieve various quantum crypto-
graphic tasks—from “proofs of quantumness” which allow a quantum device to demonstrate
its computational capability to a skeptical classical verifier, to practical applications like se-
cure delegation of computations to an untrusted remote quantum server. [39], [41], [47]–[49],
[115]

The standard way of performing multiplication (both in the classical and quantum set-
ting) is via the “schoolbook” algorithm, that uses O(n2) gates, where n is the size of the
input. While the existence of faster classical algorithms for multiplication has been known
for over a half-century, these algorithms have overheads that make them only useful for mul-
tiplication of large values—the GNU multiple-precision arithmetic library uses a threshold of
2176 bit inputs to switch away from the schoolbook method. In the quantum setting, these
overheads have generally proven to be made even worse by the reversibility constraints of
quantum circuits. Despite these challenges, several works have explored and optimized the
implementation of quantum circuits for sub-quadratic time multiplication, largely focusing
on the Karatsuba algorithm which has an asymptotic runtime of roughly O(n1.58). [176],
[183], [184], [222], [223] For many years, a significant challenge came from the fact that these
fast algorithms are recursive—and building reversible circuits for them while maintaining
the speedup required storing intermediate data, ultimately using a superlinear number of
qubits. Notable is a recent work which for the first time reduced the number of qubits for
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quantum Karatsuba multiplication to linear in the size of the inputs, by performing extra
manipulations on the output register that enable a strategy akin to tail recursion, where
intermediate results are summed directly into the output and do not need to be uncomputed
later. [176] That work provides hope for very efficient quantum integer multiplication, and
encourages the search for improvement in the gate count and especially the qubit count
(multiplying 2048 bit numbers with that algorithm still requires over 10,000 ancilla qubits).

In this work, we explore a new paradigm for the design of sub-quadratic quantum mul-
tiplication circuits. We show that by combining the fundamental ideas behind fast multi-
plication algorithms with an inherently quantum technique where arithmetic is performed
in the phases of a quantum state, it is possible to design circuits for quantum multiplica-
tion that simultaneously achieve sub-quadratic asymptotic gate counts and a constant (and
small) number of ancilla qubits: just two ancillas for multiplication of a quantum value by
a classical one, and five ancillas for the multiplication of two quantum values. Our results
yield a family of algorithms with varying tradeoffs between constant factors and asymptotic
complexity; by estimating the gate counts for our circuits we find that for 2048-bit inputs,
our O(n1.46) algorithm is the optimal one for multiplication of a quantum integer by a clas-
sical one, and our O(n1.66) one is optimal for multiplying two quantum integers. We also
find that our algorithms begin to outperform the schoolbook algorithm in gate count quite
early—for inputs with fewer than 100 bits in some cases. In terms of concrete comparisons
of circuit sizes (which we note are difficult to make fairly in the abstract circuit model) we
find that our algorithms dramatically reduce the number of qubits required for subquadratic
quantum multiplication, while simultaneously achieving competitive gate counts. We also
note that our circuits do not require intermediate measurements for measurement-based un-
computation (indeed, there are so few garbage bits produced that there is essentially nothing
to uncompute!). In terms of depth, we find that surprisingly, we are limited to O(n) depth
only because we do not know of a way to perform the quantum Fourier transform in less
than O(n) depth with such limited space—even if we allow the use of O(n) ancillas and for
the QFT to be approximate. On the other hand, the core “phase arithmetic” portion of our
algorithm can be performed in sub-linear depth using O(n) ancillas.

Directly using our circuits as a subroutine in Shor’s algorithm yields circuits that require
only 2n+O(log n) qubits, where n is the length of the integer to be factored—while obtaining
an asymptotic gate count of O(n2.46) with practical constant factors. This is compared to
the standard O(n3) gate complexity of Shor’s algorithm.1 We also explore the circuits’
application to the efficiently-verifiable cryptographic proof of quantumness introduced in
Chapter 5; we see dramatic reductions in the qubit count along with competitive gate counts,
when compared to previous implementation proposals. The new circuits also do not require
the use of measurement-based uncomputation.

1It has been known for many years that it is theoretically possible to reduce the asymptotic complexity
of Shor’s algorithm below O(n3) [224], but previously the constant factors and number of qubits required
seemed to make doing so impractical for reasonably sizes inputs. See Table 1 of [177] for a recent comparison
of proposals for the implementation of Shor’s algorithm.
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Throughout this manuscript we work in the abstract circuit model of quantum computa-
tion; a critical direction for future research is how to optimize our constructions to include
considerations such as error correction, qubit routing, and noise.

7.2 Background

7.2.1 Quantum multiplication

In this work we will focus on implementing two related quantum arithmetic operations.
The first is quantum-classical multiplication: computing the product of (a superposition
of) integers stored in a quantum register with a classical integer a. We denote the unitary
corresponding to this operation as Uq×c(a) (the subscript denotes “quantum” × “classical”,
and the unitary is parameterized by a). It implements the following operation on product
states (extended by linearity to superpositions):

Uq×c(a) |x⟩ |w⟩ = |x⟩ |w + ax⟩ (7.1)

We note that this unitary (controlled off of another qubit) is the fundamental operation used
in implementations of Shor’s algorithm (see Section 7.4.3).

The second operation we study is a quantum-quantum multiplication: finding the product
of an integer (or superposition thereof) in one quantum register with another integer (or
superposition) in a second register. We denote this as Uq×q; it implements the transformation

Uq×q |x⟩ |y⟩ |w⟩ = |x⟩ |y⟩ |w + xy⟩ (7.2)

In Sec. 7.4.4 we also discuss the closely related unitary for which |x⟩ and |y⟩ of the previous
equation are the same register, thus implementing a squaring operation:

Usquare |x⟩ |w⟩ = |x⟩ |w + x2⟩ (7.3)

This squaring operation is fundamental to implementing “proofs of quantumness” based on
the cryptographic function f(x) = x2 mod N , as discussed in Chapter 5.

7.2.2 Fast multiplication algorithms

We now discuss classical multiplication algorithms. The most straightforward algorithm for
multiplying two numbers is known as the “schoolbook” method, because it is the one taught
to young students when they first learn to multiply. The numbers are simply decomposed
into individual digits and the individual products of those digits summed, scaled by powers
of the base. In binary this can be expressed as

xy =
∑
i,j

2i+jxiyj (7.4)



CHAPTER 7. QUANTUM FAST MULTIPLICATION WITH VERY FEW QUBITS 147

(presumably most elementary school teachers use base 10). This algorithm’s time complexity
is O(n2); it is used widely for multiplication of small- to moderate-sized integers.

About half a century ago it was shown that it is possible to classically multiply integers in
sub-quadratic time—asymptotically outperforming the schoolbook algorithm. We begin by
describing the first sub-quadratic multiplication algorithm, called the Karatsuba algorithm,
and then show that it is a special case of a broader class of algorithms called Toom-Cook.
For an extended pedagogical exposition of the range of fast multiplication algorithms that
have been discovered, we refer the reader to Knuth. [225]

7.2.2.1 Karatsuba multiplication

Consider two n-bit integers x and y to be multiplied together. Divide the bits of each into
two pieces: x = 2n/2x1+x0 (and the same for y), where x1 is the bits of the “more significant”
half and x0 is the “less significant” one. Written in this way, the product can be expressed

xy = (2n/2x1 + x0)(2
n/2y1 + y0) = 2nx1y1 + 2n/2(x0y1 + x1y0) + x0y0 (7.5)

This formulation is effectively the schoolbook algorithm in base 2n. We’ve replaced one
product of size n with four products of size n/2, reflecting the quadratic scaling of the
schoolbook algorithm.

The key observation behind the Karatsuba algorithm is that

x0y1 + x1y0 = (x0 + x1)(y0 + y1)− x0y0 − x1y1 (7.6)

—and we already need to find the products x0y0 and x1y1 anyway! Making this substitution
we have

xy = 2nx1y1 + 2n/2((x0 + x1)(y0 + y1)− x0y0 − x1y1) + x0y0 (7.7)

That is, the multiplication of size n can be accomplished with only three multiplications of
size n/2, and a few extra additions! The next key insight is to apply this fact recursively, using
it again to compute each of the sub-multiplications of size n/2, and then again to compute
the multiplications used there, et cetera. Complexity analysis shows that when applied
recursively, Karatsuba multiplication computes the product in only O(nlog2 3) = O(n1.58···)
operations, outperforming the schoolbook algorithm.

7.2.2.2 Toom-Cook multiplication

The Toom-Cook algorithm uses the same intuition as Karatsuba, but splits each integer
into k parts instead of just two. It also provides a broader intuition for why the Karatsuba
algorithm works, by expressing the problem in terms of polynomial multiplication.

Consider an n-digit integer x divided into k chunks of size n/k, which we denote
x0, x1, · · · , xk−1 with xk−1 being the most significant:

x = xk−12
(k−1)n/k + · · ·+ x12

n/k + x0 (7.8)
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This can be reinterpreted as a polynomial

x(w) = xk−1w
k−1 + · · ·+ x1w + x0 (7.9)

evaluated at w = 2n/k. From this perspective, we can recast a product of integers p = xy as
a product of polynomials p(w) = x(w)y(w), evaluated at w = 2n/k. The benefit of expressing
the product this way is that for any point wi, p(wi) = x(wi)y(wi), and we can choose values
of wi such that x(wi) and y(wi) are only roughly n/k bits long and thus the product is faster
to compute. This suggests the following plan: compute the value of p(w) at several points,
use those points to reconstruct the coefficients of the polynomial p(w), and finally evaluate
p(w) at w = 2n/k yielding the integer product z. x(w) and y(w) are polynomials of degree
k−1, so their product p(w) is of degree 2(k−1), thus we must evaluate it at q = 2(k−1)+1
points to unambiguously reconstruct the coefficients.

It may be helpful at this point to recast the Karatsuba algorithm in this light. Karatsuba
corresponds to the case of k = 2; the integer x is converted into the polynomial x(w) =
x1w + x0 (and similarly for y). Here q = 2(k − 1) + 1 = 3, and so we evaluate the product
p(wi) = x(wi)y(wi) at the three points wi ∈ {0, 1,∞}:

p(0) = x(0)y(0) = x0y0 (7.10)
p(1) = x(1)y(1) = (x0 + x1)(y0 + y1) (7.11)
p(∞) = x(∞)y(∞) = x1y1 (7.12)

(where the value of polynomial p at infinity is the limit of p(w)/wdeg(p) as w → ∞). The
coefficients of the polynomial p(w) can be expressed in terms of its value at these three points
as follows:

p(w) = p(∞)w2 + (p(1)− p(∞)− p(0))w + p(0). (7.13)

Substituting Eqns. 7.10-7.12 into Eq. 7.13 and evaluating at w = 2n/2 yields Eq. 7.7, the
expression we originally had for computing p in Karatsuba multiplication!

The benefit of framing our multiplication in this way is that it becomes very straightfor-
ward to set k to values larger than 2. The Toom-Cook algorithm can be viewed as a five-step
process, which is conveniently expressed in terms of linear algebra: [226]

1. Split We divide the bits of x and y into k chunks each, which serve as the coefficients
of a polynomial as in Eq. 7.9 above. We can represent this polynomial simply as a vector of
the coefficients:

x = (xk−1, · · · , x1, x0) (7.14)

In this representation, evaluating the polynomial at a point wi corresponds to computing
the inner product e⊺x with a vector

e(wi) = (wk−1
i , · · · , wi, 1) (7.15)
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2. Evaluate The next step is to evaluate those polynomials at several points. We define a
length q = 2(k−1)+1 vector x̃ which contains the evaluation of our polynomial at each of q
points w0, w1, · · · . With this we write x̃ = Ax, where each row of the matrix A is e(wi) for
one of the points wi at which we desire to evaluate the polynomial. Later it will be helpful
to write A as a q × q matrix; we’ll allow multiplication by the length k vector x by simply
extending prepending zero entries to x for the higher order terms. With that, A has the
following structure:

A =


wq−1

0 · · · w2
0 w0 1

wq−1
1 · · · w2

1 w1 1
... . . . ...

...
...

wq−1
q−1 · · · w2

q−1 wq−1 1

 (7.16)

We perform that matrix-vector multiplication for both x and y.

3. Multiply Now that x and y are expressed as polynomials evaluated at several points, we
reach the payoff: we multiply the polynomials by simply performing pointwise multiplication
of the vectors:

p̃ = x̃ ◦ ỹ (7.17)

where p̃ is the result polynomial evaluated at the points wi, and ◦ denotes the pointwise
product. Note the benefit here: we are performing 2q pointwise products of size n/k, instead
of the k2 products of that size that would be required for schoolbook multiplication. Since
q = 2(k− 1)+1 this is a very dramatic improvement! Furthermore we will recursively apply
the Toom-Cook algorithm to each of the pointwise multiplications of the vector elements.

4. Interpolate Now that we have the vector p̃ representing the product polynomial eval-
uated at each of the q points wi, we need to convert it to a vector of polynomial coefficients
p. We know that p̃ = Ap; by appropriate choice of the wi we can ensure that A is invert-
ible. Then we can simply compute the matrix inverse A−1, resulting in a straightforward
computation p = A−1p̃.

5. Recomposition Finally, with the product polynomial expressed in terms of its coeffi-
cients p, the integer product can be recovered by evaluating that polynomial at w = 2n/k.
As before this can be written as the inner product (e(2n/k))⊺p, where

e(2n/k) = (2(q−1)n/k, · · · , 22n/k, 2n/k, 1) (7.18)

With the algorithm laid out, let us the asymptotic complexity of Toom-Cook for any k.
The algorithm performs q = 2(k − 1) + 1 multiplications of size n/k at the top level, and
then recurses. Straightforward complexity analysis yields a runtime of O(nlogk q), which can
be made arbitrarily close to O(n) as k is increased. Unfortunately in practice the constant
factors grow rapidly as k is increased, due to the cost of performing the matrix vector
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products Ax, Ay and (A−1)p. In practice, the value of k is varied depending on the size
of the integers to be multiplied, but regardless of the size of input k is only practicable for
small values (certainly less than 10). [227]

7.2.3 Fourier arithmetic

Many proposals for the implementation of quantum arithmetic mirror classical circuits, with
various clever optimizations to account for the fact that quantum operations must in general
be reversible. [176], [181], [228]–[232] However, one early work by Draper stands out as an
example of a quantum arithmetic circuit that truly has no classical analogue. [156] That
work proposes to use the quantum Fourier transform (QFT) to compute addition, and to
use that addition circuit as a building block for implementing multiplication.

The action of the quantum Fourier transform, with modulus 2m, on a product state |x⟩ of
m qubits can be written as follows (and by linearity extended to a superposition of inputs):

QFT2m |x⟩ =
∑
z

exp
(
2πi

xz

2m

)
|z⟩ (7.19)

(and the inverse quantum Fourier transform IQFT2m is the reverse of this operation). Draper
observed that one can perform addition in the Fourier basis simply by applying a series of
phase rotations to the qubits of the register holding z:

QFT2m |x+ a⟩ =
∑
z

exp

(
2πi

(x+ a)z

2m

)
|z⟩ =

∑
z

exp
(
2πi

az

2m

)
exp

(
2πi

xz

2m

)
|z⟩ (7.20)

The rightmost expression is just QFT2m |x⟩ with an extra phase shift exp
(
2πi az

2m

)
.

This construction can be readily extended to implement the multiplication unitaries
described in Sec. 7.2.1. We simply add the product (cx in the classical-quantum case, xy
in the quantum-quantum case) to the |w⟩ register using Fourier addition. Denoting the
unitaries that apply the appropriate phase in the Fourier basis with a tilde:

U = (I⊗ IQFT) Ũ (I⊗ QFT) (7.21)

we can write down Ũq×c and Ũq×q (in terms of their action on product states):

Ũq×c(a) |x⟩ |z⟩ = exp
(
2πi

axz

2m

)
|x⟩ |z⟩ (7.22)

Ũq×q |x⟩ |y⟩ |z⟩ = exp
(
2πi

xyz

2m

)
|x⟩ |y⟩ |z⟩ (7.23)

Note that here, z represents each basis state resulting from applying the quantum Fourier
transform to the output register; z is not the value itself that was already stored in the
output register. We may decompose the quantum values as x =

∑
i 2

ixi (and respectively
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for y and z), yielding:

exp
(
2πi

axz

2m

)
=
∏
i,j

exp

(
2πia2i+j

2m
xizj

)
(7.24)

exp
(
2πi

xyz

2m

)
=
∏
i,j,k

exp

(
2πi2i+j+k

2m
xiyjzk

)
(7.25)

Since we have decomposed to individual bits, the product xiyj (or xiyjzk in the quantum-
quantum case) is simply 1 if all relevant bits are 1, or 0 otherwise. This means these individual
phase factors can be implemented via (doubly-)controlled-phase rotations of phase

ϕij =
2πa2i+j

2m
(mod 2π) (7.26)

between qubits xi and zj in the classical-quantum case, and

ϕijk =
2π2i+j+k

2m
(mod 2π) (7.27)

between qubits xi, yj, and zk in the quantum-quantum case. Importantly, these phases
depend only on classical values, and can be computed during circuit compilation on a classical
computer.

For the classical-quantum multiplication case, the total number of controlled-phase gates
applied to implement multiplication is O(n2), which matches the complexity achieved by
converting the classical “schoolbook” algorithm for integer multiplication into a quantum
circuit (but is worse than the sub-quadratic multiplications described earlier). This scaling
arises in an interesting way: we have accrued an extra factor of n due to the fact that
a rotation proportional to the product ax must be performed for each of the n bits of z.
However, we have simultaneously managed to get rid of a factor of n, due to the fact that a
is classical, so we can coalesce the rotations corresponding to each bit of a and do them as
one gate. Unfortunately, for quantum-quantum multiplication, it is not possible to coalesce
the rotations for each yj in the same way, because y is stored in qubits. Thus we need
O(n3) doubly-controlled-phase gates, which is considerably worse than quantum versions of
schoolbook multiplication. Yet there are still benefits to this strategy. First, the constants
on the scaling are very good: implementing Ũ requires exactly n2 or n3 phase rotations
(actually, even fewer since some of the rotations are so small they can be dropped). Second,
it uses zero ancilla qubits. This can be contrasted with traditional adder circuits, which need
extra work space to perform carries. Finally, it can be massively parallelized, since all the
phase rotations commute, yielding better circuit depth.

In this work, we call this type of quantum circuit for multiplication “Fourier multiplica-
tion.”
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7.3 Results
Our main result is that it is possible to decompose the phases used in a Fourier multiplication
via Toom-Cook-like transformations, ultimately yielding circuits with fewer thanO(n2) gates
for both classical-quantum and quantum-quantum multiplication. We first give the intuition
behind the transformation, explaining it for k = 2 for both classical-quantum and quantum-
quantum multiplication. Then, we describe the case of arbitrary k in Section 7.3.3. Next,
we analyze the gate counts and ancilla usage of these algorithms. Finally we describe how
small modifications allow us to optimize the ancilla usage and depth, achieving the results
stated in the introduction.

Throughout this work we will focus specifically on the implementation of an operation
we call the “PhaseProduct:”∑

x,z

cx,z |x⟩ |z⟩
PhaseProduct(ϕ)
==========⇒

∑
x,z

exp(iϕxz)cx,z |x⟩ |z⟩ (7.28)

and a related operation which we call the “PhaseTripleProduct:”∑
x,y,z

cx,y,z |x⟩ |y⟩ |z⟩
PhaseTripleProduct(ϕ)
=============⇒

∑
x,y,z

exp(iϕxyz)cx,y,z |x⟩ |y⟩ |z⟩ (7.29)

Note that these operations are generalizations of Ũq×c and Ũq×q respectively—setting ϕ =
2πc/2m in the former and ϕ = 2π/2m in the latter recovers Eqs. 7.22 and 7.23. The gener-
alization will be helpful when we apply the transformations recursively.

7.3.1 k = 2 classical-quantum multiplication

The fundamental idea is to decompose the phase ϕxz of Eq. 7.28 by using the Karatsuba de-
composition (and later via Toom-Cook for general k). A first attempt at directly substituting
Eq. 7.7 into the phase of Eq. 7.28 and decomposing into a product of phases yields

exp (2πiϕxz) = exp (2πiϕ2nx1z1) · exp
(
2πiϕ2n/2((x0 + x1)(z0 + z1)− x1z1 − x0z0)

)
· exp (2πiϕx0z0)

This decomposition is not ideal—we still need to compute the value (x0 + x1)(z0 + z1) −
x1z1 − x0z0, which requires storing and reusing the partial products x0z0 and x1z1. Instead,
we note that the prefactors on each phase are just some value, which is classically computed
at circuit compilation time. We should endeavor to move as much of the arithmetic into
these prefactors as possible, since they are set before the circuit runs and any complexity
there does not affect the quantum circuit cost. Thus rearranging Eq. 7.7 to group by partial
products, rather than powers of two, yields

exp (2πiϕxz) = exp
(
2πi(2n − 2n/2)ϕx1z1

)
· exp

(
2πi2n/2ϕ(x0 + x1)(z0 + z1)

)
· exp

(
2πi(1− 2n/2)ϕx0z0

)
(7.30)
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The implications of this expression are drastic. Each phase rotation on the right hand
side consists of an entirely classical phase factor, multiplied by a product of two quantum
integers. This is simply another application of PhaseProduct, but in which the integers are
half as long! We can recursively apply the decomposition again to each of the sub-products,
until the input integers are sufficiently small that we perform the phase products directly
via individual two-qubit controlled-phase rotations.

Importantly, breaking the phase down this way does not require computing and storing
any extra values in ancilla registers—the computation can be performed in-place. We do need
the values (x0 + x1) and (z0 + z1), which we compute via regular quantum addition circuits.
Importantly however, since addition is reversible we can compute these values in-place (up
to a single “overflow” qubit), temporarily overwriting x1 and z1 respectively.

In Algorithm 7.1, we explicitly record the steps of this algorithm, and then we move on
to the case of quantum-quantum multiplication.

Algorithm 7.1: PhaseProduct(ϕ, |x⟩, |z⟩) for k = 2

Input: Quantum state
∑

x,z cx,z |x⟩ |z⟩
Classical phase factor ϕ

Output: Quantum state
∑

x,z exp(2πiϕxz)cx,z |x⟩ |z⟩
Divide |x⟩ and |z⟩ registers in half, so |x⟩ = |x0⟩ |x1⟩ and |z⟩ = |z0⟩ |z1⟩ (here using
little-endian bit order).

1 Apply PhaseProduct((1− 2n/2)ϕ, |x0⟩ , |z0⟩) via recursive call
2 Apply PhaseProduct((2n − 2n/2)ϕ, |x1⟩ , |z1⟩) via recursive call
3 Apply quantum addition circuit from |x0⟩ to |x1⟩, yielding the state |x0⟩ |x0 + x1⟩ in

the x register (and resp. for z register)
4 Apply PhaseProduct(2n/2ϕ, |x0 + x1⟩ , |z0 + z1⟩) via recursive call
5 Apply quantum subtraction circuit from |x0⟩ to |x0 + x1⟩, restoring it to |x1⟩ (and

resp. for z register)

7.3.2 k = 2 quantum-quantum multiplication

For quantum-quantum multiplication we desire to implement the phase shift ϕxyz from
Eq. 7.29, where x, y, and z are all stored in quantum registers. In a less constrained setting
(such as in classical computing or “digital” quantum arithmetic), the product of three integers
would be computed by taking the product of two of the integers and then multiplying the
third integer by the result—so no special algorithm for the product of three integers is
required. However, we are decomposing a phase, and this is only possible over sums, not
products. Thus we introduce modified versions of the Karatsuba algorithm, which compute
the product of three integers in one step.
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Fortunately, viewing Karatsuba as pointwise multiplication of polynomials (as discussed
in Sec. 7.2.2) gives a fairly straightforward way to do this. Denote the integer product
we desire as p = xyz. We will again consider the factors x, y, and z as polynomials and
evaluate them at a set of points wi. This time we will compute the pointwise triple product
p(wi) = x(wi)y(wi)z(wi), and as before interpolate the polynomial p(w) and evaluate it at
the appropriate w to recover the desired integer result p. The main difference from the
two-integer case is that the degree of the polynomial p will be higher (3 in this case), so we
will need to use more points wi. Regular (two-integer) Karatsuba as described in Sec. 7.2.2
uses the points {0,∞, 1}, fortunately, it is easy to include the point −1 corresponding to the
linear combination x0 − x1 (resp. y and z), for a total of 3 + 1 = 4 points which uniquely
will specify our degree-3 polynomial p. With that, we can write down a modified Karatsuba
decomposition which applies to triple products (here grouping by partial products in view
of the discussion in classical-quantum case):

xyz = (23n/2 − 2n/2)x1y1z1 +
1

2
(2n + 2n/2)(x0 + x1)(y0 + y1)(z0 + z1)

+
1

2
(2n − 2n/2)(x0 − x1)(y0 − y1)(z0 − z1) + (1− 2n)x0y0z0 (7.31)

As before, the factors in each of the sub-multiplications are half the size of the original ones
(up to one bit of overflow)!

Using this to decompose the phase ϕxyz, we end up with an algorithm that is struc-
turally identical to the recursive decomposition of ϕxz in the classical-quantum case. In
Algorithm 7.2, we describe how to perform this decomposition explicitly.

Note that as we show in Table 7.1, the k = 2 quantum-quantum case does not actually
provide a sub-quadratic gate count—it requires O(n2) two-qubit gates, matching the asymp-
totic cost of “digital” schoolbook multiplication. However it does provide a drastic speedup
over the O(n3) gate count of the schoolbook algorithm for the PhaseTripleProduct operation
represented in Eq. 7.29. In any case, it’s an illustrative example that provides good intuition
for the k > 2 cases which do yield a sub-quadratic runtime, which we discuss next.

7.3.3 k > 2

In this section we describe the general case of k > 2 for both classical-quantum and quantum-
quantum multiplication. As in the previous two sections, we would like to apply the Toom-
Cook decomposition to the phase products ϕxz and ϕxyz. Using the notation introduced in
Sec. 7.2.2.2, we can write the entire Toom-Cook process for computing an integer product
xz as a linear algebra expression:

xz = (e(2n/k))⊺A−1(Ax ◦ Az) (7.32)

As in the previous section, to decompose the triple product we modify the Toom-Cook
algorithm to take the pointwise triple product:

xyz = (e(2n/k))⊺A−1(Ax ◦ Ay ◦ Az) (7.33)
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Algorithm 7.2: PhaseTripleProduct(ϕ, |x⟩, |y⟩, |z⟩) for k = 2

Input: Quantum state
∑

x,y,z cx,y,z |x⟩ |y⟩ |z⟩
Classical phase factor ϕ

Output: Quantum state
∑

x,y,z exp(iϕxyz)cx,y,z |x⟩ |y⟩ |z⟩
Divide |x⟩, |y⟩, and |z⟩ registers in half, so |x⟩ = |x0⟩ |x1⟩, |y⟩ = |y0⟩ |y1⟩ and
|z⟩ = |z0⟩ |z1⟩ (here using little-endian bit order).

1 Apply PhaseTripleProduct((1− 2n)ϕ, |x0⟩ , |y0⟩ , |z0⟩) via recursive call
2 Apply PhaseTripleProduct((23n/2 − 2n/2)ϕ, |x1⟩ , |y1⟩ , |z1⟩) via recursive call
3 Apply quantum addition circuit from |x1⟩ to |x0⟩, yielding the state |x0 + x1⟩ |x1⟩ in

the x register (and resp. for y and z registers)
4 Apply PhaseTripleProduct(1

2
(2n + 2n/2)ϕ, |x0 + x1⟩ , |y0 + y1⟩ , |z0 + z1⟩) via recursive

call
5 Apply quantum circuit to subtract 2x1 from |x0 + x1⟩, yielding the state
|x0 − x1⟩ |x1⟩ in the x register (and resp. for y and z registers)

6 Apply PhaseTripleProduct(1
2
(2n− 2n/2)ϕ, |x0 − x1⟩ , |y0 − y1⟩ , |z0 − z1⟩) via recursive

call
7 Apply quantum addition circuit from |x1⟩ to |x0 − x1⟩, restoring it to |x0⟩ (and resp.

for y and z registers)

Note that as in Section 7.3.2, the triple product increases the degree of the product polyno-
mial, so we must evaluate the polynomials at more points. As a function of k, this number
of points is q = 3(k − 1) + 1 in the three-integer (PhaseTripleProduct) case (whereas it is
q = 2(k − 1) + 1 in the two-integer (PhaseProduct) case)

Inserting these expressions into the phases of Eq. 7.28 and 7.29, we have

exp (iϕx[y]z) = exp
(
iϕ(e(2n/k))⊺A−1(Ax[◦Ay] ◦ Az)

)
(7.34)

where we use square brackets to denote parts that only appear in the three-integer,
PhaseTripleProduct case, but not in the two integer PhaseProduct case.

As in the k = 2 case, we’d like to decompose Eq. 7.34 in a way that allows us to include
as much linear algebra as possible in the prefactors, which can be classically computed at
circuit compilation time. To do so, we define ê⊺ = (e(2n/k))⊺A−1, and decompose the phase
across the inner product of ê⊺ and the pointwise product Ax[◦Ay] ◦ Az:

exp (iϕx[y]z) =
∏
i

exp (iϕêi(Ax)i[(Ay)i](Az)i) (7.35)

We see that now, as before, each of the phase factors in the product on the right hand side
has the same form as the left hand side—a classical phase factor (in this case ϕŵi) multiplied
by a product of integers. By choosing the points wi appropriately we can ensure that the
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values (Ax)i (resp. y and z) are roughly 1/k the size of the input integers, up to overflow
bits, reducing our larger multiplication to q much smaller ones.

The decomposition in Eq. 7.35 suggests a simple algorithm for computing PhaseProd-
uct and PhaseTripleProduct efficiently, for general k. We lay out the steps explicitly in
Algorithm 7.3. In that algorithm, the square brackets denote values that only appear when
computing the PhaseTripleProduct. We note that Algorithm 7.3 is meant to be as simple as
possible while exhibiting the asymptotic scaling we desire; in practice optimizations should
be applied to reduce the qubit count and/or depth (see Secs. 7.3.4.2 and 7.3.4.3 below).

Algorithm 7.3: Phase[Triple]Product(ϕ, |x⟩, [|y⟩], |z⟩)
Input: Quantum state

∑
x,[y,]z cx,[y,]z |x⟩ [|y⟩] |z⟩

Classical phase factor ϕ
Tunable parameter k (and corresponding data A, w, etc.)

Output: Quantum state
∑

x,[y,]z exp(iϕx[y]z)cx,[y,]z |x⟩ [|y⟩] |z⟩
Divide |x⟩, [|y⟩,] and |z⟩ registers into k subregisters each.
Let q = 2(k − 1) + 1 [q = 3(k − 1) + 1]

for i in 1 : q do
Let h be an index such that Aih = 1 /* such an index always exists */

1 Use quantum addition/subtraction to overwrite xh (and a few “overflow”
ancillas) with (Ax)i (resp. [y,] z)

2 Apply Phase[Triple]Product(ŵiϕ, (Ax)i, [(Ay)i, ](Az)i) via recursive call
3 Use quantum addition/subtraction to return (Ax)i to xh (resp. [y,] z)

end

Finally, note that the multiplications by e(2n/k)⊺ and A−1 in Eqs. 7.32 and 7.33 cor-
respond to step 4 (interpolation) and step 5 (recomposition) of the classical Toom-Cook
algorithm respectively (see Sec. 7.2.2). Step 4 is the most complicated of the whole algo-
rithm in terms of arithmetic; it requires roughly twice as many additions and subtractions
as step 2 in the two-integer product case, and three times as many in the triple product.
By offloading that step to classical precomputation, we have cut the quantum computa-
tional cost of a each level of recursion by an additional roughly 2/3 (PhaseProduct) or 3/4
(PhaseTripleProduct).

7.3.4 Analysis of asymptotic costs

7.3.4.1 Gate counts

We now analyze the asymptotic scaling of the gate counts for Algorithm 7.3. We state our
results as the following Theorem, which yields the scaling exponents listed in Table 7.1.
Its proof is similar to the proof of the asymptotic complexity of the classical Toom-Cook
algorithms. [225]
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Algorithm Gate count
Schoolbook O(n2)

k = 2 O(nlog2 3) = O(n1.58···)

k = 3 O(nlog3 5) = O(n1.46···)

(a) Classical-quantum multiplication

Algorithm Gate count
Schoolbook O(n3)

k = 2 O(nlog2 4) = O(n2)

k = 3 O(nlog3 7) = O(n1.77···)

k = 4 O(nlog4 10) = O(n1.66···)

(b) Quantum-quantum multiplication

Table 7.1: Asymptotic scaling of gate counts for Algorithm 7.3, for various k
relevant in practice. “Schoolbook” in this table refers to the phase decompositions of
Eqs. 7.24 and 7.25.

Theorem 6. Algorithm 7.3 can be implemented on a quantum device using O(nlogk q) two-
qubit gates, where n is the length of the input integers.

Proof. We first show that the recursive calls are performed on integers of size n/k+ t(k), for
some function t(k) which is independent of n. From this we write a recursion relation and
solve it to prove the theorem.

The recursive calls are performed on values of the form (Ax)i (resp. y and z). For
the purposes of this proof, let the points wi be any q integers in the range (−q, q). Then,
the relevant elements of A—corresponding to powers of each point wi up to degree k—are
bounded by qk; since q is linear in k this implies that the elements of A are at most O(k log k)
bits long. The elements of x (resp. y and z) are of size n/k, thus a single product Aijxj has
length n/k + O(k log k). The value (Ax)i is the sum over k of these products, which adds
at most log k bits, so we see that (Ax)i can be stored in n/k +O(k log k) bits. Thus we see
t(k) = maxi⌈log(Ax)i⌉ − n/k = O(k log k).

With that we may write a recursion relation for the gate count G. For one level of recur-
sion, the algorithm performs at most 2qk additions and subtractions, and q recursive calls
of size n/k+ t(k) (one per iteration of the outer loop). With the additions and subtractions
being performed in linear time dn for some constant d, we have

G(n) = dn+ qG(n/k + t(k)) (7.36)

Noting that if G is a polynomial of degree ≤ 2, then G(n/k + t(k)) ≤ G(n/k) + O(nt(k)),
solving the recursion yields

G(n) = O(nlogk q) (7.37)

which is what we desired to show. Finally, because q is at most 3(k−1)+1 it is straightforward
to see that for all k ≥ 2 (which is all of the allowed values of k), the power of n is ≤ 2, and
thus our assumption that G was a polynomial of degree at most two was justified.



CHAPTER 7. QUANTUM FAST MULTIPLICATION WITH VERY FEW QUBITS 158

7.3.4.2 Qubit counts

In the proof of Theorem 6, we showed that the value (Ax)i (resp. y and z) may overflow
the register it is overwriting by a number of bits t(k) = O(k log k) which is constant in
n. It is straightforward to see, then, that the algorithm can be executed using O(log n)
ancilla qubits—a constant number of ancillas are used at each of the log n levels of recursion.
In this section we show that it is possible to do even better, using only a small constant
number of qubits for the entire operation (2 for classical-quantum multiplication, and 5 for
quantum-quantum).

The first key observation is that we may reduce the overflow to a single qubit, by adjusting
slightly how we divide the factors into their k parts. If we set the size of the k − 1 less-
significant parts of the value to ⌊(n − t)/k⌋ bits, then the most-significant part will be at
least t bits longer than all the others. Thus if we choose our wi such that the coefficient
on that large piece is 1, and overwrite it with the linear combination (Ax)i (resp. y and
z), it will overflow by at most one qubit. Since each of the x, y, and z will have such an
overflow qubit, this leads to a total of 3 overflow qubits per level of recursion (or 2 for the
classical-quantum case, in which we only have x and z).

While we now only need one overflow qubit per level of recursion, we still need to deal
with the larger issue of overflow qubits accumulating through the recursive calls. To do
so, we perform the portion of the multiplication that involves that extra overflow qubit
directly, before moving down in the recursive tree. Because one of the factors in this partial
multiplication is only a single qubit, the contribution to the overall runtime is negligible.
Once it has been done, the overflow qubit is uncomputed, and can be reused at a lower level
recursive call.

We make these two ideas explicit in Algorithm 7.4, which reduces the ancilla qubit count
to at most 3, while maintaining the asymptotic gate count of Algorithm 7.3.

Theorem 7. Algorithm 7.4 can be implemented in O(nlogk q) two-qubit gates, where n is the
length of the input integers.

Proof. There are three important ways in which Algorithm 7.4 differs from Algorithm 7.3:
there is only one overflow qubit per register, steps 2-5 are new, and the recursive call of step
6 is on a value of length ℓ′ rather than n/k + t(k). For the last one, it is straightforward
to see that ℓ′ ≤ n/k + t(k), so the latter change will not adversely affect the running time.
Thus we just need to show that only one overflow qubit is required, and that the cost of
steps 2-5 is negligible in the asymptotic limit.

First we show that only a single overflow qubit is indeed required to store (Ax)i in the
subregister xk−1 (resp. y and z). First observe that for wi ∈ {0,∞}, (Ax)i ∈ x0, xk−1 so
clearly no overflow qubits are needed. The other wi are unit fractions with denominator αi.
For these, recall that (Ax)i =

∑
j α

k−1−j
i xj. Thus (Ax)i is bounded from above by 2ℓ

′
+2ℓt′.

By definition ℓ′ − ℓ ≥ t′, so (Ax)i requires at most ℓ′ + 1 bits to store, which is what we
desired to show.
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Algorithm 7.4: Phase[Triple]Product(ϕ, |x⟩, [|y⟩], |z⟩) with O(1) ancillas

Input: Quantum state
∑

x,[y,]z cx,[y,]z |x⟩ [|y⟩] |z⟩
Classical phase factor ϕ
Tunable parameter k

Output: Quantum state
∑

x,[y,]z exp(iϕx[y]z)cx,[y,]z |x⟩ [|y⟩] |z⟩
Let αmax = ⌈(k − 2)/2⌉.
Let the evaluation points wi be k values from the set
{0,∞} ∪ {1/α,−1/α|1 ≤ α ≤ αmax}.

Let t′ = ⌈log(∑1≤i<k αmax
i)⌉.

Let ℓ = ⌊(n− t′)/k⌋.
Let q = 2(k − 1) + 1 [q = 3(k − 1) + 1].
Divide |x⟩, [|y⟩,] and |z⟩ registers into k subregisters, where the k − 1 least
significant have length ℓ and the most significant contains the remaining bits whose
size we denote ℓ′.

for i in 1 : q do
1 Use quantum addition/subtraction to overwrite xk−1 and one “overflow” ancilla

with (Ax)i (resp. [y,] z)
Let |xω⟩ represent the overflow qubit of the xk−1 subregister (resp. y, z)

2 Apply phase 2ℓ
′
ŵiϕ[(Ay)i](Az)i controlled by qubit |xω⟩

3 [Apply phase 2ℓ
′
ŵiϕ((Ax)i mod 2ℓ

′
)(Az)i controlled by qubit |yω⟩]

4 Apply phase 2ℓ
′
ŵiϕ((Ax)i mod 2ℓ

′
)[((Ay)i mod 2ℓ

′
)] controlled by qubit |zω⟩

5 Uncompute the overflow qubit for each register
6 Apply Phase[Triple]Product(ŵiϕ, (Ax)i mod 2ℓ

′
, [(Ay)i mod 2ℓ

′
, ](Az)i mod 2ℓ

′
)

via recursive call
7 Use quantum addition/subtraction to return (Ax)i mod 2ℓ

′ to xh (resp. [y,] z)
end

Now we examine the cost of steps 2-5. We begin with steps 2-4, in the case of Phase-
Product (used for classical-quantum multiplication), because it is simpler. In this case the
parts of Algorithm 7.4 in square brackets are omitted, including all of step 3. In steps 2 and
4, we need to do a controlled application of phases proportional to (Az)i and (Ax)i mod 2ℓ

′ .
These values are both already contained in a register, so this can be easily achieved with a
series of ℓ′ controlled-phase gates, where ℓ′ is within in additive constant of n/k. Thus in
this case our recursion relation is simply (cf. Eq 7.36)

G(n) = O(n) + qG(ℓ′) (7.38)

For steps 2-4 of PhaseTripleProduct, we need to implement phases proportional to
(Ay)i(Az)i, ((Ax)i mod 2n/k)(Az)i, and ((Ax)i mod 2n/k)((Ay)i mod 2n/k). Once again all
these values are readily available, but simply applying a series of doubly-controlled phase
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rotations would use n2 gates—which is too large. Instead, we may apply a controlled version
of the PhaseProduct algorithm, for some (perhaps different) k′! Doing so will require a total
of O(nlog′k q′) gates, and we get a recursion relation

G(n) = O(nlog′k q′) + qG(ℓ′) (7.39)

where again ℓ′ is within an additive constant of n/k. Thus as long as we set k′ such that

logk′ [2(k
′ − 1) + 1] < logk[3(k − 1) + 1] (7.40)

both Eqs. 7.38 and 7.39 have the solution

O(nlogk q) (7.41)

which is what we desired to show.
The only thing that remains is step 5. We must show that uncomputing the overflow

ancillas uses only a negligible number of gates. This is straightforward: the entire value
(Ax)i requires only a number of gates linear in n to compute, so uncomputing the entire
thing and recomputing (Ax)i mod 2ℓ

′ would require only O(n) gates. (In practice the single
ancilla can be uncomputed more efficiently than uncomputing the entire value).

Remark: We note that k′ = 2 satisfies Eq. 7.40 for k ≤ 5, which includes all of the k
values we explicitly explore in this work.

Theorem 8. Algorithm 7.4 uses at most 2 ancillas for PhaseProduct, and at most 5 for
PhaseTripleProduct.

Proof. Again we begin with the case of PhaseProduct (which implements classical-quantum
multiplication). In step 1, one ancilla qubit is allocated for the x and z registers respectively,
for a total of two. Steps 2-4 do not require the allocation of any new ancilla qubits if they are
implemented as a series of controlled-phase gates (as they are in the proof of Theorem 7).
Because we uncompute the overflow ancillas in step 5, they can then be reused during the
recursive call of step 6, thus requiring no additional ancilla qubits to be allocated. Thus
PhaseProduct requires a total of 2 ancillas.

For PhaseTripleProduct, 3 ancillas (one for each register) are allocated in step 1. But as
described in the proof of Theorem 7, steps 2-4 require the application of a controlled version
of PhaseProduct. We have just shown that this requires 2 ancillas. Once again, in step 5 we
uncompute the overflow ancillas and they can be reused during the recursive call of Step 6.
Thus we see that PhaseTripleProduct can be implemented with a total of 5 ancillas.

In practice, we may be interested in the size of t′, which is roughly ℓ′ − n/k, because
although it is clear that their difference is constant, if that constant is large it could mean-
ingfully affect the practical cost of performing the recursion (since the recursive products are
of size ℓ′). In Table 7.2, we record the values of t′ for various k, and observe that they are
very small in practice.
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Algorithm variant t′

k = 2 0
k = 3 3

(a) Classical-quantum multiplication

Algorithm variant t′

k = 2 0
k = 3 4
k = 4 7

(b) Quantum-quantum multiplication

Table 7.2: Number of bits t′ by which the length of subregister xk−1 must exceed
the lengths of the other subregisters in Algorithm 7.4. This corresponds roughly to
the “extra” length in addition to n/k of values which are recursively multiplied.

7.3.4.3 Gate depth

Finally, we discuss gate depth. The main results of this section are summarized in Table 7.3,
and formalized in Theorem 9. Stated succinctly, we find that it is possible to perform the
phase shifts implemented by PhaseProduct and PhaseTriple product in sub-linear gate depth.
Unfortunately, this does not immediately imply that these algorithms can be used to achieve
sub-linear depth multiplication in O(n) qubits—surprisingly, we are bottlenecked by the
quantum Fourier transform and its inverse, that need to be performed before and after the
phase products! The lowest-depth (approximate) quantum Fourier transform circuit of which
we are aware that runs in linear space is the “standard” construction having depth O(n);
fast algorithms which have O(log n) depth are known but seem to require at least O(n log n)
qubits [233]. An important and exciting direction for future research is whether it is possible
to compute this (approximate) quantum Fourier transform in sub-linear depth and linear
space. Despite this limitation, we believe it is worth exploring how the Phase[Triple]Product
portion of the multiplication can be made as low-depth as possible; in practice the constants
are good enough on the linear-space quantum Fourier transform circuit that we expect its
depth to be comparable to the depth of the Phase[Triple]Product for relevant sizes of integers,
despite its worse asymptotic scaling. The low-depth constructions given here useO(n) ancilla
qubits (note that this is more than the O(1) ancillas we used in the previous section) We
expect that in practice the qubit cost will be dominated by the O(n) qubits needed to
perform sub-linear time addition [230]; the number of ancillas needed for the overflow qubits
in this case is also linear in n but small. We begin by giving intuition for how low depth can
be achieved, and then state Theorem 9.

In Algorithms 7.3 and 7.4, in each iteration of the outer loop overwrites a single value
xh of length n/k with (Ax)i (resp. y and z), recursively computes Phase[Triple]Product on
that value, and then resets it to its original contents. However, we have k of these length
n/k subregisters at our disposal—we may as well overwrite more than just one of them,
so that we can perform several recursive calls in parallel! The challenge is that we need
to compute each of the (Ax)i (resp. y and z) in-place, reversibly. We do not know of an
algorithmic way to simultaneously compute many (Ax)i in-place for arbitrary k; instead,
in Tables 7.4, 7.5, and 7.6 we record explicit sequences of operations to do so, which were
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Algorithm Sequence Depth
Schoolbook O(n)

k = 2 Alg. 7.1 O(nlog2 2) = O(n)
k = 3 Table 7.4 O(nlog3 2) = O(n0.63···)

(a) Classical-quantum multiplication

Algorithm Sequence Depth
Schoolbook O(n2)

k = 2 Alg. 7.2 O(nlog2 2) = O(n)
k = 3 Table 7.5 O(nlog3 3) = O(n)
k = 4 Table 7.6 O(nlog4 4) = O(n)∗

(b) Quantum-quantum multiplication

Table 7.3: Asymptotic scaling of gate depth. “Schoolbook” in this table refers to the
phase decompositions of Eqs. 7.24 and 7.25. The form of the scaling relation comes from
Theorem 9. All algorithms listed here use only O(n) qubits. ∗ Sublinear depth should be
achievable for k = 4 by finding a sequence of operations using fewer parallel groups than
that of Table 7.6.

created by hand for the cases of k = 3 (both PhaseProduct and PhaseTripleProduct) and
k = 4 (PhaseTripleProduct only). We also note that Algorithms 7.1 and 7.2, which cover
the k = 2 cases, already implicitly allow this parallelism. In all of these sequences we have
endeavored to only use addition, sign inversion, and scaling by powers of two, since each of
these operations should be very efficient to implement.

Since we have k subregisters at our disposal, and q points at which we need to evaluate
(Ax)i (resp. y and z), the best parallelism we can hope to achieve (in a single level of
recursion) is np = ⌈q/k⌉ parallel groups of recursive calls. Recalling the dependence of
q on k, this quantity is equal to np =

⌈
2(k−1)+1

k

⌉
= 2 for PhaseProduct (for all k ≥ 2)

and np =
⌈
3(k−1)+1

k

⌉
= 3 for PhaseTripleProduct (for all k ≥ 3). (Note that the optimum is

achieved by the sequences in Algs. 7.1 and 7.2, and Tables 7.4 and 7.5). In view of Theorem 9
below, this corresponds to an asymptotic gate depth of O(nlogk 2) for PhaseProduct and
O(nlogk 3) for PhaseTripleProduct. An avenue for further research is whether it is possible
to saturate the hard lower bound of depth equal to total gate count over n, using only O(n)
ancillas, by parallelizing over multiple levels of recursion simultaneously.

We formalize our results regarding gate depth in the following theorem, and give explicit
asymptotic scaling of gate depth in Table 7.3.



CHAPTER 7. QUANTUM FAST MULTIPLICATION WITH VERY FEW QUBITS 163

Operation Register 0 Register 1 Register 2
(start) |x0⟩ |x1⟩ |x2⟩

Add reg. 2 to reg. 1 |x0⟩ |x2 + x1⟩ |x2⟩
Add reg. 0 to reg. 1 |x0⟩ |x2 + x1 + x0⟩ |x2⟩

Product on all registers |x0⟩ |x2 + x1 + x0⟩ |x2⟩
Invert sign of reg. 1 |x0⟩ |−x2 − x1 − x0⟩ |x2⟩
Add reg. 0 to reg. 1 |x0⟩ |−x2 − x1⟩ |x2⟩

Add 2× reg. 2 to reg. 1 |x0⟩ |x2 − x1⟩ |x2⟩
Add reg. 1 to reg. 0 |x2 − x1 + x0⟩ |x2 − x1⟩ |x2⟩
Add reg. 0 to reg. 1 |x2 − x1 + x0⟩ |2x2 − 2x1 + x0⟩ |x2⟩

Add 2× reg. 2 to reg. 1 |x2 − x1 + x0⟩ |4x2 − 2x1 + x0⟩ |x2⟩
Product on regs. 1 and 0 |x2 − x1 + x0⟩ |4x2 − 2x1 + x0⟩ |x2⟩

Invert sign of reg. 1 |x2 − x1 + x0⟩ |−4x2 + 2x1 − x0⟩ |x2⟩
Add 2× reg. 2 to reg. 1 |x2 − x1 + x0⟩ |−2x2 + 2x1 − x0⟩ |x2⟩
Add reg. 1 to 2× reg. 0 |x0⟩ |−2x2 + 2x1 − x0⟩ |x2⟩

Add reg. 0 to reg. 1 |x0⟩ |−2x2 + 2x1⟩ |x2⟩
Add 2× reg. 2 to reg. 1 |x0⟩ |2x1⟩ |x2⟩

Divide reg. 1 by two |x0⟩ |x1⟩ |x2⟩

Table 7.4: k = 3 low-depth classical-quantum multiplication algorithm. This table
lists the quantum operations performed to implement the unitary Ũq×c(a). The registers are
divided into subregisters as |x⟩ = |x0⟩ |x1⟩ |x2⟩ and |z⟩ = |z0⟩ |z1⟩ |z2⟩ (using little-endian
notation, so x0 is the least-significant subregister). In this table only the state of the x sub-
registers are shown; the same operations are applied to the z register. “Product on registers”
means to apply a phase corresponding to the product of the respective x and z registers,
usually by recursively calling the same algorithm again. Registers containing values upon
which the algorithm is applied recursively are highlighted in bold. The linear combinations
used here for the products correspond to the evaluation points wi ∈ {0,∞,±1,−2}.
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Operation Register 0 Register 1 Register 2
(start) |x0⟩ |x1⟩ |x2⟩

Add reg. 0 to reg. 1 |x0⟩ |x0 + x1⟩ |x2⟩
Add reg. 2 to reg. 1 |x0⟩ |x0 + x1 + x2⟩ |x2⟩

Product on all |x0⟩ |x0 + x1 + x2⟩ |x2⟩
Add −1× reg. 2 to reg. 1 |x0⟩ |x0 + x1⟩ |x2⟩

Add 2× reg. 0 to −1× reg. 1 |x0⟩ |x0 − x1⟩ |x2⟩
Add reg. 1 to reg. 2 |x0⟩ |x0 − x1⟩ |x0 − x1 + x2⟩
Add reg. 2 to reg. 1 |x0⟩ |2x0 − 2x1 + x2⟩ |x0 − x1 + x2⟩

Add 2× reg. 0 to reg. 1 |x0⟩ |4x0 − 2x1 + x2⟩ |x0 − x1 + x2⟩
Product on regs. 1 and 2 |x0⟩ |4x0 − 2x1 + x2⟩ |x0 − x1 + x2⟩

Add reg. 0 to 2× reg. 2 |x0⟩ |4x0 − 2x1 + x2⟩ |3x0 − 2x1 + 2x2⟩
Add reg. 2 to −2× reg. 1 |x0⟩ |−5x0 + 2x1⟩ |3x0 − 2x1 + 2x2⟩
Add 2× reg. 2 to reg. 1 |x0⟩ |x0 − 2x1 + 4x2⟩ |3x0 − 2x1 + 2x2⟩

Add reg. 1 to −4× reg. 2 |x0⟩ |x0 − 2x1 + 4x2⟩ |−11x0 + 6x1 − 4x2⟩
Add 2× reg. 1 to reg. 2 |x0⟩ |x0 − 2x1 + 4x2⟩ |−9x0 + 2x1 + 4x2⟩
Add 8× reg. 0 to reg. 2 |x0⟩ |x0 − 2x1 + 4x2⟩ |−x0 + 2x1 + 4x2⟩
Add 2× reg. 0 to reg. 2 |x0⟩ |x0 − 2x1 + 4x2⟩ |x0 + 2x1 + 4x2⟩

Product on regs. 1 and 2 |x0⟩ |x0 − 2x1 + 4x2⟩ |x0 + 2x1 + 4x2⟩
Add reg. 2 to −1× reg. 1 |x0⟩ |4x1⟩ |x0 + 2x1 + 4x2⟩
Add −1× reg. 0 to reg. 2 |x0⟩ |4x1⟩ |2x1 + 4x2⟩

Add −1× reg. 1 to 2× reg. 2 |x0⟩ |4x1⟩ |8x2⟩
Divide reg. 1 by 4 |x0⟩ |x1⟩ |8x2⟩
Divide reg. 2 by 8 |x0⟩ |x1⟩ |x2⟩

Table 7.5: k = 3 quantum-quantum multiplication sequence. In this table only the
state of the x sub-registers are shown; the same operations are applied to the z register. Reg-
isters containing values upon which the algorithm is applied again recursively are highlighted
in bold. The linear combinations used here for the products correspond to the evaluation
points wi ∈ {0,∞,±1,±2,−1/2}.
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Operation Register 0 Register 1 Register 2 Register 3
(start) |x0⟩ |x1⟩ |x2⟩ |x3⟩

Add reg. 0 to reg. 2 |x0⟩ |x1⟩ |x0 + x2⟩ |x3⟩
Add reg. 3 to reg. 1 |x0⟩ |x1 + x3⟩ |x0 + x2⟩ |x3⟩
Add reg. 2 to reg. 1 |x0⟩ |x0 + x1 + x2 + x3⟩ |x0 + x2⟩ |x3⟩

Add reg. 1 to −2× reg. 2 |x0⟩ |x0 + x1 + x2 + x3⟩ |−x0 + x1 − x2 + x3⟩ |x3⟩
Product on all regs. |x0⟩ |x0 + x1 + x2 + x3⟩ |−x0 + x1 − x2 + x3⟩ |x3⟩
Add reg. 1 to reg. 2 |x0⟩ |x0 + x1 + x2 + x3⟩ |2x1 + 2x3⟩ |x3⟩

Add −3× reg. 3 to reg. 2 |x0⟩ |x0 + x1 + x2 + x3⟩ |2x1 − x3⟩ |x3⟩
Add 3× reg. 0 to reg. 1 |x0⟩ |4x0 + x1 + x2 + x3⟩ |2x1 − x3⟩ |x3⟩
Add reg. 2 to 2× reg. 1 |x0⟩ |8x0 + 4x1 + 2x2 + x3⟩ |2x1 − x3⟩ |x3⟩

Add 3× reg. 3 to 2× reg. 2 |x0⟩ |8x0 + 4x1 + 2x2 + x3⟩ |4x1 + x3⟩ |x3⟩
Add −1× reg. 1 to 2× reg. 2 |x0⟩ |8x0 + 4x1 + 2x2 + x3⟩ |−8x0 + 4x1 − 2x2 + x3⟩ |x3⟩
Product on regs. 1 and 2 |x0⟩ |8x0 + 4x1 + 2x2 + x3⟩ |−8x0 + 4x1 − 2x2 + x3⟩ |x3⟩

Add reg. 1 to −1× reg. 2 |x0⟩ |8x0 + 4x1 + 2x2 + x3⟩ |16x0 + 4x2⟩ |x3⟩
Divide reg. 2 by 4 |x0⟩ |8x0 + 4x1 + 2x2 + x3⟩ |4x0 + x2⟩ |x3⟩

Add 6× reg. 2 to reg. 1 |x0⟩ |32x0 + 4x1 + 8x2 + x3⟩ |4x0 + x2⟩ |x3⟩
Add −15× reg. 0 to 4× reg. 2 |x0⟩ |32x0 + 4x1 + 8x2 + x3⟩ |x0 + 4x2⟩ |x3⟩

Add 15× reg. 3 to reg. 1 |x0⟩ |32x0 + 4x1 + 8x2 + 16x3⟩ |x0 + 4x2⟩ |x3⟩
Divide reg. 1 by 2 |x0⟩ |16x0 + 2x1 + 4x2 + 8x3⟩ |x0 + 4x2⟩ |x3⟩

Add −15× reg. 0 to reg. 1 |x0⟩ |x0 + 2x1 + 4x2 + 8x3⟩ |x0 + 4x2⟩ |x3⟩
Add reg. 1 to −2× reg. 2 |x0⟩ |x0 + 2x1 + 4x2 + 8x3⟩ |−x0 + 2x1 − 4x2 + 8x3⟩ |x3⟩

Product on regs. 1 and 2 |x0⟩ |x0 + 2x1 + 4x2 + 8x3⟩ |−x0 + 2x1 − 4x2 + 8x3⟩ |x3⟩
Add 6× reg. 1 to −2× reg. 2 |x0⟩ |x0 + 2x1 + 4x2 + 8x3⟩ |8x0 + 8x1 + 32x2 + 32x3⟩ |x3⟩

Divide reg. 2 by 8 |x0⟩ |x0 + 2x1 + 4x2 + 8x3⟩ |x0 + x1 + 4x2 + 4x3⟩ |x3⟩
Add −3× reg. 2 to 2× reg. 1 |x0⟩ |−x0 + x1 − 4x2 + 4x3⟩ |x0 + x1 + 4x2 + 4x3⟩ |x3⟩
Add 3× reg. 0 to 4× reg. 1 |x0⟩ |−x0 + 4x1 − 16x2 + 16x3⟩ |x0 + x1 + 4x2 + 4x3⟩ |x3⟩
Add 12× reg. 3 to reg. 2 |x0⟩ |−x0 + 4x1 − 16x2 + 16x3⟩ |x0 + x1 + 4x2 + 16x3⟩ |x3⟩

Add −3× reg. 0 to 4× reg. 2 |x0⟩ |−x0 + 4x1 − 16x2 + 16x3⟩ |x0 + 4x1 + 16x2 + 64x3⟩ |x3⟩
Add 48× reg. 3 to reg. 1 |x0⟩ |−x0 + 4x1 − 16x2 + 64x3⟩ |x0 + 4x1 + 16x2 + 64x3⟩ |x3⟩

Product on regs. 1 and 2 |x0⟩ |−x0 + 4x1 − 16x2 + 64x3⟩ |x0 + 4x1 + 16x2 + 64x3⟩ |x3⟩
Add reg. 2 to reg. 1 |x0⟩ |8x1 + 128x3⟩ |x0 + 4x1 + 16x2 + 64x3⟩ |x3⟩
Divide reg. 1 by 8 |x0⟩ |x1 + 16x3⟩ |x0 + 4x1 + 16x2 + 64x3⟩ |x3⟩

Add −4× reg. 1 to reg. 2 |x0⟩ |x1 + 16x3⟩ |x0 + 16x2⟩ |x3⟩
Add −1× reg. 0 to reg. 2 |x0⟩ |x1 + 16x3⟩ |16x2⟩ |x3⟩

Divide reg. 2 by 16 |x0⟩ |x1 + 16x3⟩ |x2⟩ |x3⟩
Add −16× reg. 3 to reg. 1 |x0⟩ |x1⟩ |x2⟩ |x3⟩

Table 7.6: k = 4 quantum-quantum multiplication sequence. In this table only the state
of the x sub-registers are shown; the same operations are applied to the y and z registers. Reg-
isters containing values upon which the algorithm is applied again recursively are highlighted in
bold. The linear combinations used here for the products correspond to the evaluation points
wi ∈ {0,∞,±1,±1/2,±2,±4}.
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Theorem 9. The algorithms recorded in Algs. 7.1 and 7.2, and Tables 7.4, 7.5, and 7.6, can
be executed in depth O(nlogk p) using O(n) qubits, where p is the number of groups of parallel
recursive calls in the algorithm.

Proof. First we prove the depth bound. If we use fast algorithms for the additions, we may
perform them in time d log n for some constant d [230]. As in the proof of Theorem 6 we
denote the number of “overflow” bits of each (Ax)i as t(k), a function which does not depend
on n. With this we can write a recursion relation

D(n) = d log n+D(n/k + t) (7.42)

We note that for any power p, O((n/k + t)p) = O(np) + O(tp). The second term is O(1)
with respect to n so we may drop it, thus we may solve the recursion with

D(n) = O(nlogk np) (7.43)

which is what we desired to show.
Next we show that this depth can be achieved using O(n) qubits. The logarithmic-depth

addition uses O(n) ancillas which can be reused after the addition is complete. Thus we
only need to show that the “overflow” qubits are at most O(n) across all levels of recursion.

Suppose we cut off the recursion (or at least the parallelism) when the size of input
integers is below some constant value ncutoff . At the bottom level of recursion, there will
be at most n/ncutoff values being phase multiplied in parallel, each needing up to t overflow
ancillas. The number of values being multiplied, and thus the number of overflow ancillas, at
each level of the tree of recursive calls is at most half of the level below it; thus by geometric
series, the total number of overflow ancillas at all levels is at most twice the number of
overflow ancillas at the bottom level. Thus the total number of overflow ancillas is at most
2tn/ncutoff , which is linear in n, which is what we desired to show.

Remark: We note that for the values of k relevant in practice, the number of overflow
ancillas t for a single value (Ax)i is quite small (see Table 7.2). Since the total number of
ancillas needed is bounded by 2nt/ncutoff , and ncutoff can be taken to be, say, 50 without
drastic loss of parallelism, we expect the qubit usage from “overflow” ancillas to not only be
linear in n, but in fact a quite small fraction of n in practice. It is likely that the number
of ancillas used for these overflows will be dwarfed by the ancilla usage from sub-linear-time
addition.

7.3.5 Fast exact quantum Fourier transform

In this section we show that our results imply a new upper bound for the gate cost of per-
forming an exact quantum Fourier transform modulo a power of 2 with only O(1) ancillas.
We note that in practice, the quantum Fourier transform should always be performed ap-
proximately, which can be achieved with the standard construction to within error ϵ in time
O(n log(1/ϵ)). [168] However we believe the following is at least of theoretical interest.
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It was shown over two decades ago that the quantum Fourier transform with modulus
2n, which we may denote QFT2n , can be implemented exactly via the following three steps
for any positive integer m < n (stated here in the language we have been using in this
work): [233]

1. Apply QFT2n−m to the first n−m qubits

2. Apply PhaseProduct(2π/2n, |x⟩, |y⟩), where x is the value of the first n − m qubits
and y is the value of the remaining m qubits

3. Apply QFT2m to the final m qubits

(Note that m = 1 corresponds to the “standard” construction for the QFT). By setting
m = n/2 and performing steps 1 and 3 via recursive call, the runtime of this algorithm
becomes O(log n) times the cost of step 2. In the work introducing this construction, it
was suggested to implement step 2 by adding a length n ancilla register and computing the
product xy in that register, then applying single-qubit phase rotations based on the bits of
the product (and then uncomputing the product afterwards). Given our results, we may
apply PhaseProduct directly without needing to allocate an extra register. This directly
implies that the exact quantum Fourier transform can be implemented in sub-quadratic
time without the need for more than the O(1) ancillas used by PhaseProduct (in fact, just
using a single anicilla for the case of k = 2).

7.3.6 Practical circuit costs

Having examined the asymptotic costs of our algorithms, we estimate the gate and qubit
counts required to implement them in practice. There are a number of tunable parameters
which affect the gate counts for different types of gates as well as the qubit counts; here we
set the parameters to achieve a particular balance of gate counts and number of ancillas.
The results for non-modular multiplication of 2048-bit numbers are summarized in Table 7.7.
We find that these algorithms drastically reduce qubit counts, while exhibiting competitive
gate counts. Regarding gate counts, we note two things: first, that making a direct com-
parison between our algorithms and others is not straightforward, because they use different
gate sets—for example, a sizeable fraction of the two-qubit gates in our classical-quantum
multiplication algorithm are controlled phase rotations, while in other implementations the
two- and one-qubit gates might consist entirely of Clifford operations. Second, we note
that these estimates for our algorithms correspond to preliminary circuit constructions; it
is likely that there are further optimizations to be had in the implementation which could
yield considerable improvement in gate counts especially.

For each value of k, we numerically determine the “crossover” point, the value of n
above which the algorithm k outperforms k − 1. Here, we define “outperform” as using
fewer total CCRϕ, CRϕ, and Toffoli gates. In Table 7.8 we record the optimal crossover
points that we find for each k. We note that these crossover points are dependent on the
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Algorithm
Gate count (millions)

Ancilla qubits
Toffoli/CCRϕ 2- and 1-qubit

Classical-quantum multiply-add
This work 0.46 2.6 12

Digital Windowed [234] 1.8 2.5 4106
Digital Karatsuba [234] 5.6 34 12730
Digital Schoolbook [234] 6.4 38 2048∗

Quantum-quantum multiply-add
This work 54 26 30

Digital Karatsuba† [176] 15 30 13152
Digital Schoolbook† [176] 21 420 4096∗

Table 7.7: Circuit size estimates for multiplication of 2048-bit numbers. All esti-
mates are in the “abstract circuit model” (no error correction or routing costs included and
all qubit counts are logical), thus comparisons between gate counts especially should be con-
sidered rough. The “digital” algorithms refer to algorithms which compute the multiplication
directly rather than in Fourier space; estimates were computed using the Q# code from [176]
and [234] The 2- and 1-qubit gate count column is in addition to the 3-qubit gates; it does
not include decomposed 3-qubit gates. ∗These qubit counts are the values reported in [176]
and [234]; we do not see why it would not be possible to perform schoolbook multiplication
without the need for ancilla qubits. †The resource estimates for digital quantum-quantum
multiplication assume the output register is initialized to zero (that is, they only perform a
multiplication, not a “multiply-add”).

specific implementation and definition of cost, and so may vary, for example, if the circuits
are compiled to target a certain physical gate set. Using these crossover points in our
implementation of 2048-bit multiplication, we adjust k throughout the recursion to always
use the optimal algorithm for the size of the factors, eventually switching to schoolbook when
the factors have become sufficiently small.

For our estimates, we use the Cuccaro quantum adder to perform the additions required
by our algorithms [229]. The Cuccaro adder requires one extra ancilla qubit, but it can be
reused after the adder is complete. We consider this tradeoff worth it for its low gate counts.
For sign inversions and multiplication/division by powers of 2, we note that both can both
be implemented “logically” with zero quantum cost. Sign inversion in two’s complement
representation corresponds to flipping all bits of the integer and incrementing the value by 1.
Flipping all bits can be performed logically by relabeling which quantum state corresponds
to 0 and which to 1; the addition of one can easily be incorporated into the next addition
following the sign flip via the input “carry” bit that is inherently a part of Cuccaro addition.
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Algorithm variant Cutoff
Schoolbook —

k = 2 (Karatsuba) 29
k = 3 114

(a) Classical-quantum multiplication

Algorithm variant Cutoff
Schoolbook —
k = 2 9
k = 3 58
k = 4 262

(b) Quantum-quantum multiplication

Table 7.8: Crossover points of the algorithms. The “cutoff” column lists the smallest
value of n for which the given algorithm has a smaller gate count than the one immediately
preceding it in the table. The “schoolbook” algorithm is the base case, and thus does not
have a cutoff. Note that the values in this table are estimates and depend strongly on the
precise implementation of the circuits.

Multiplication and division by powers of 2 correspond just to bit shifts and can be performed
for zero quantum cost by relabeling qubits.

Finally, we note that in addition to the cost of the circuits to implement the phases, we
must also apply a quantum Fourier transform beforehand and an inverse quantum Fourier
transform afterward. If we apply the standard technique of dropping phase rotations below
a certain threshold to implement an approximate QFT, the gate count of these operations
is negligible (less than the least significant figure listed in Table 7.7) even when the error for
the approximate QFT is set as low as 10−9. This standard approximate QFT construction
also requires no ancilla qubits.

7.4 Applications and optimizations
In this section we describe various tweaks that can be made to our algorithms to optimize
them for two exciting applications: Shor’s algorithm, and cryptographic proofs of quantum-
ness. Before discussing those in depth, we begin with an aside about modular multiplication
which will be relevant for both applications.

7.4.1 Modular multiplication

So far, we have discussed algorithms for non-modular multiplication—the inputs are each
of length n, and the output is of length 2n. For both the applications we discuss here,
we are instead interested in multiplication modulo some integer N . In this section we will
show that with a small modification, our algorithms can output the product p in the form
of an (approximate) binary fraction (p mod N)/N of precision m bits (stored on m qubits),
while maintaining their asymptotic costs. Later we will show that this form, with m not
much larger than n, is sufficient for relevant applications. Here we discuss only the case
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of quantum-quantum multiplication to avoid unnecessarily complicated notation, but the
results trivially carry over to the case of classical-quantum multiplication.

In the preceding sections, we have been working in Fourier space modulo 22n. In Fourier
space, the modular multiplication result we desire has the following form (here dropping any
constant w to which the result was added, but it can be trivially included):

QFT22n |xy mod N⟩ =
∑
z

exp

(
2πi

(xy mod N)z

22n

)
|z⟩ (7.44)

It is relatively well-known that if we instead work in Fourier space modulo N , we may apply
the following identity:

exp

(
2πi

(xy mod N)z

N

)
= exp

(
2πi

xyz

N

)
(7.45)

Intuitively, as the phase wraps around 2π, it automatically performs the modulo operation
for us! This seems to suggest that applying our circuits to modular multiplication is trivial:
simply change the modulus of the Fourier transforms.

The challenge is that circuits for performing the quantum Fourier transform with an
arbitrary modulus are considerably more complex than for a power of two—and (to our
knowledge) there do not exist constructions for the QFT with arbitrary modulus that operate
in sub-quadratic time using only O(1) ancillas, which is what we desire. Instead, we may
apply the phase of Eq. 7.45 but perform the final quantum Fourier transform modulo a power
of two instead of N . This is simply quantum phase estimation for the phase 2πxy/N . It is
well known that quantum phase estimation for a phase that cannot be represented exactly
as a binary fraction yields a superposition which is exponentially heavily weighted on the
binary strngs that best approximate the value of the phase. [168]

We note that there is another construction by which we can use our circuits to compute
modular multiplication exactly, with the same asymptotic gate count but now using 3n+O(1)
qubits. It is a quantum version of a classical construction called Montgomery multiplication.
It is particularly nice because classically, Montgomery multiplication has the downside of
introducing a (known) extra factor into the result that needs to eventually be dealt with; for
classical-quantum multiplication the inverse of this extra factor can be classically multiplied
into the classical input, canceling it out and obviating the need to deal with it later. However,
we do not pursue that method further here because the approximate version above uses fewer
qubits and suffices for our needs.

7.4.2 Skipping unnecessary QFTs

Another optimization relevant for both the applications below involves simplifying quantum
Fourier transforms in certain cases. If we know that the “output” register is starting in the |0⟩
state, applying the initial quantum Fourier transform will just yield a uniform superposition
over all bitstrings, all with the same phase of +1. Thus we can skip the complication of a
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Fourier transform modulo 2m and simply apply a Hadamard gate to each of the qubits in
parallel, yielding the same state in depth 1 instead of depth O(n). (Note that we do still
have to perform the full inverse quantum Fourier transform at the end of the multiplication.)

With that, we move on to discussing applications.

7.4.3 Shor’s algorithm

The core of Shor’s algorithm for factoring an integer of n bits can be implemented via a series
of in-place multiplications by classical constants, controlled off of a single qubit (see the “one
controlling qubit” trick, Sec. 2.4 of [157]). Written out, a single one of these multiplications
consists of the in-place operation

|x⟩ → |cx mod N⟩ (7.46)

for a classical integer c. Here we apply the modular multiplication introduced in Sec. 7.4.1 to
implement this operation to within an error ϵ using 2n+O(log 1/ϵ) qubits (while maintaining
the same subquadratic gate count of the multiplication algorithm).

To do so, we make the following observation: our classical-quantum multiplication algo-
rithm does not require that the classical value c be an integer. It can be a floating-point
number, which we may classically compute to whatever arbitrary precision we desire before
using it to compute the values of the phase rotations in our multiplication algorithm. We use
this fact to perform the following trick: compute the fractional value w = (cx mod N) ·2n/N
up to some precision m as in Eq. 7.45, and then multiply by the value N/2n to convert
the fractional value w into an integer. The accuracy of this operation will depend on the
precision to which we compute w; however, we will find that we only need O(log(1/ϵ)) extra
bits to achieve an error of less than ϵ.

Algorithm 7.5 applies this idea to approximately implement the unitary of Eq. 7.46. It
is clear by inspection that it uses n + O(log 1/ϵ) ancilla qubits in time O(nlogk q). In the
following theorem we prove the error bound.

Theorem 10. The final state |ψ⟩ produced by Algorithm 7.5 has inner product
⟨ψ|cx mod N⟩ ≥ 1−O(ϵ).

Proof. We begin by showing that if Algorithm 7.5 were run with infinite precision (that
is, setting m → ∞), the correct state would result with zero error. Then we show that the
difference between the unitary applied in the infinite precision case and the real case is small.

In the infinite precision case, after step 1 we have the state |x⟩ |w⟩ for w = ((c − 1)x
mod N) · (2n/N). In step 2 we add w · N/2n = (c − 1)x mod N to x, yielding cx mod N
or (cx mod N) + 1 exactly. Step 3 uses an ancilla to reduce this to cx mod N ; the ancilla
now contains whether N needed to be subtracted or not. Beauregard observed the identity
(a + b) mod N ≥ a ⇔ a + b < N [157], in our case this implies that the truth value of the
comparison cx mod N < w ·N/2n will equal the value of the ancilla and thus can be used to
uncompute it. Finally, for step 5, observe that ((1−c−1)(cx) mod N) = (c−1)x mod N = w
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Algorithm 7.5: In-place classical-quantum modular multiplication

Input: Quantum state |x⟩ (extended to superpositions by linearity)
Classical constant c
Error level ϵ

Output: Quantum state |cx mod N⟩ (up to error ϵ)

Let m = n+ ⌈2 log(2 + 1/2ϵ)⌉
Allocate a register of m ancillas initialized to |0⟩

1 Compute |x⟩ |0⟩ → |x⟩ |w̃⟩ for w = ((c− 1)x mod N) · (2n/N) via classical-quantum
multiplication, where w̃ is w rounded to a precision of n+ ⌈log(2 + 1/2ϵ)⌉ bits

2 Compute |x⟩ |w⟩ → |x+ (N/2n)w⟩ |w⟩. State is now (approximately)
|cx mod N⟩ |w⟩ or |(cx mod N) +N⟩ |w⟩.

3 Using an ancilla qubit, compute whether the left register is greater than N ; subtract
N controlled by the ancilla. State is now |cx mod N⟩ |w⟩

4 Uncompute the ancilla qubit by computing whether cx mod N < w ·N/2n via a
comparison operator

5 Subtract the value w = ((1− c−1)(cx) mod N)/N from the second register, where
c−1 is the multiplicative inverse of c (mod N). State is now |cx mod N⟩ |0⟩.

and thus subtracting it from the second register resets that register to zero. Also note that the
multiplicative inverse c−1 exists because c and N are co-prime (or, if they’re not, gcd(c,N)
provides a factor of N without requiring Shor’s algorithm at all!). We now have the state
|cx mod N⟩ |0⟩ which is what we desired. Now we turn to showing that the approximate
circuit, in which m = n + O(log 1/e), yields a unitary that is within ϵ of the circuit with
m→∞.

We begin with step 1. Here we must show that applying Hadamard gates to generate
|x⟩∑z |z⟩, then a phase rotation of ϕ = 2πwz and then an inverse QFT module 2m yields
a state that is ϵ close to |x⟩ |w̃⟩. This can be seen immediately by observing that this
process corresponds precisely to the quantum phase estimation algorithm for the phase 2πw,
without the usual final measurement to extract an estimation of the phase. It is known
that performing quantum phase estimation with an extra ⌈log(2 + 1/2ϵ)⌉ qubits beyond the
precision to which the phase is desired yields a probability of at least 1 − ϵ of yielding the
value of the phase correctly up to the desired precision. [168] Here w̃ corresponds to this
“correct” value of the phase which would be observed if the register were measured, so the
population of the state |x⟩ |w̃⟩ must be at least 1− ϵ and the overall error of this step is at
most O(ϵ).

Now we move to step 2. Observe that even for the largest value of z, the difference in this
phase when w is exact versus truncated to a total of m bits is bounded by 1/2m−n, and by
definition m− n = O(log 1/ϵ). Thus the difference in the phase is O(ϵ), and thus the angle
between the state resulting from the exact rotation versus the truncated one is proportional
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to ϵ.
Steps 3 and 4 are not directly affected by the precision of the second register, so they do

not contribute any additional error.
Finally, step 5 simply corresponds to the inverse of step 1. Since the “good” (error-free)

portion of the state has |cx mod N⟩ in the first register exactly, this step exactly uncomputes
the second register.

With that, we see that each individual step has error less than O(ϵ) when compared to
the case of infinite m; the overall operation’s error is bounded by the sum of individual errors
and thus is bounded by O(ϵ) as well, which is what we desired to show.

For Shor’s algorithm, this operation must be repeated O(n) times. Using our fast mul-
tiplication algorithms of O(nlogk(2k−1)) time (with k ≥ 2), this yields an implementation of
Shor’s algorithm that runs in O(n1+logk(2k−1)) time, significantly faster than the usual O(n3)
runtime for Shor’s algorithm. To be more concrete, it is O(n2.46···) for k = 3. Importantly,
this runtime is achieved while maintaining a very lean qubit count: Algorithm 7.5 uses
2n+ log(1/ϵ) total qubits, and since we must repeat it n times we should set ϵ ∼ 1/n. Thus
the total qubit count for this implementation of Shor’s algorithm is 2n + O(log n) qubits.
To our knowledge this is the first implementation of Shor’s algorithm running faster than
O(n3) time within this space constraint.

Finally we describe an alternative way of implementing Shor’s algorithm in fewer than
O(n3) total gates using our circuits. It takes advantage of the idea of “windowed arithmetic”,
which has produced some of the fastest known circuits for Shor’s algorithm [177], [234]. In
brief, instead of multiplying by each classical integer cb in sequence, a QROM circuit is used
to look up the product

∏
cbii mod N over p values i, from a classical lookup table of size

2p indexed by the bi. The QROM circuit puts this value into a quantum register, at which
point a quantum-quantum multiplication circuit (which no longer must be controlled by
another qubit) can be applied to compute the product. While such a construction reduces
the total number of quantum multiplications which need to be performed, they are now
quantum-quantum multiplications instead of controlled classical-quantum multiplications;
in the context of our circuits it’s not clear a priori whether the extra cost (including the cost
of the QROM circuit) is worth it. Also, this construction seems to require at least 3n qubits,
plus the ancilla cost of the QROM. Nevertheless, a valuable direction for further research
would be to explicitly count the gates of this construction and compare its cost to the other
construction described above.

7.4.4 Proofs of quantumness: x2 mod N

As discussed in previous chapters, much recent excitement has focused on creating and im-
plementing efficiently-verifiable “proofs of quantumness,” in which an untrusted quantum
“prover” can demonstrate its quantum capability to a efficient classical “verifier” [39], [41],
[44], [45], [115], [150], [235]. These protocols are interesting not only for their ability to de-
cisively demonstrate quantum computational advantage, but also because they can be mod-
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ified to perform more complex quantum cryptographic tasks, such as certifiable generation
of quantum random numbers, verifiable remote state preparation, and even the classically-
verifiable delegation of arbitrary quantum computations to an untrusted device [39], [47]–
[49]. Many of these protocols centrally rely on a cryptographic construction called a trap-
door claw-free function (TCF), and all known TCF constructions involve multiplication of
integers in various contexts—making the circuits we develop in this work useful for the imple-
mentation of these protocols. In this section we focus on the implementation of the function
f(x) = x2 mod N introduced in Chapter 5, which seems to give the best circuit sizes of the
currently known TCFs.

To compute x2 mod N , we can directly apply our quantum-quantum multiplication cir-
cuits, with the inputs x and y being the same register. However, in the specific context of the
proof of quantumness introduced in Chapter 5 there are certain further optimizations we can
apply which reduce the circuit sizes considerably. With all of these optimizations applied,
we find that the proof of quantumness protocols using x2 mod N can be implemented with
dramatically fewer intermediate measurements and qubits that in the circuits introduced
in Chapter 5, while maintaining competitive gate counts. We also believe more optimized
implementations could reduce the gate counts considerably. In Table 7.9 we summarize these
costs for various sizes of the modulus N . We now describe these optimizations in detail.

First, we note that the output of the function is measured immediately after it is com-
puted. Thus instead of building a quantum circuit to compute x2 mod N in the form of an
integer, we have the freedom to build a circuit that computes any bitstring that uniquely
corresponds to such an integer. Classical post-processing can then be used to compute and
return the integer value itself. In the context of our circuits, this suggests an immediate
optimization: as discussed in Sec. 7.4.1, we can perform the modulo operation automatically
in the phase, if we are willing to accept output in the form of a binary fraction representing
the value (x2 mod N)/N . As long as we have enough bits of precision to uniquely iden-
tify an integer from this binary fraction, we may directly measure this output instead of
transforming it back to integer form as we did in Shor’s algorithm.

Another optimization comes from an observation about the cryptography of trapdoor
claw-free functions (TCFs). The classical hardness of the TCF-based “proof of quantumness”
protocols comes from the fact that it is hard to find two inputs (x, x′) such that f(x) = f(x′),
where f is a given instance of the TCF family. It is easy to show that this implies that it
is also hard to find a pair of values (g(x′), g(x′)) for any efficiently-invertible function g—
because if such a pair could be found, the function could be immediately inverted to yield
(x, x′)! Therefore the classical verifier should allow the prover’s input registers to be modified
by the TCF circuit, as long as the prover informs the verifier of the transformation that was
made so that the verifier can perform the correct checks on the modified values. This is
relevant to our recursive circuits for multiplication, because it means we can drop any gates
that serve simply to return the input to its original values. As an example, in the k = 2 case,
we may allow our circuit to end with the input registers set to |x0⟩ |x0 + x1⟩ (resp. z), as
long as the verifier knows that this is the value that is being manipulated in the later rounds
of the protocol. (In practice we can drop the final gates of all levels of recursion, not just
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Circuit Total
qubits

Gates (CCRϕ/
Toffoli allowed)

Extra mid-
circuit measmts.

n = 128 (takes seconds on a desktop [174])
Fast 272 2.3× 105 0

Narrow 204 4.2× 105 0
Previous best 942 1.3× 105 3.4× 104

n = 400 (takes hours on a desktop [174])
Fast 814 1.8× 106 0

Narrow 627 3.9× 106 0
Previous best 3051 8.8× 105 2.4× 105

n = 829 (record for factoring [175])
Fast 1676 5.5× 106 0

Narrow 1268 1.3× 107 0
Previous best 5522 3.0× 106 8.0× 105

n = 1024 (exceeds factoring record)
Fast 2068 7.9× 106 0

Narrow 1566 1.8× 107 0
Previous best 6801 4.3× 106 1.1× 106

Table 7.9: Resource estimates for the x2 mod N portion of a proof-of-quantumness
protocol. These estimates do not include any error correction; depending on the individual
gate fidelities it may be possible to mitigate error sufficiently using the post-selection scheme
described in Chapter 5. Also note that the additional mid-circuit measurements performed
in the cryptographic protocol after x2 mod N is computed are not included here.

the top level, so the final state will look more complicated—but still be trivially computable
by the verifier).

One more benefit comes from the fact that we are performing a square instead of a generic
multiplication. A nice feature of the recursive algorithms is that if the top-level operation is
to compute a square x2z, all of the lower levels of recursions will compute squaring operations
as well (of the form (Ax)2i (Az)i). Therefore when we eventually reach sufficiently small n in
the recursion and switch to the schoolbook algorithm, that operation will be performing a
square as well. We note that the complexity of the schoolbook algorithm for applying a phase
proportional to x2z is roughly half the cost of the same operation for xyz, because rotations
of the form xixjzk and xjxizk are identical and can be combined. Also, phase rotations of
the form xixizk (in which both x bits are the same) correspond to a single-controlled phase
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rotation, instead of a doubly-controlled one. These facts yield to a significant reduction in
the cost of performing the controlled-phase rotations.

If space is very limited, yet another optimization stems from the fact that we are mea-
suring the output immediately as it is produced. Instead of computing all the bits of the
output at once, we may instead compute subsets of the bits of the output sequentially. For
example, one may let the output register be of length only roughly n/2, and perform a
smaller quantum-quantum multiplication to compute the less-significant half of the output
and measure it. Then the same process can be repeated for the more-significant half, re-using
the same output qubits. This optimization reduces the total qubit count from 2n + O(1)
to 1.5n + O(1). The gate count will be somewhat larger due to the fact that the recursive
multiplication cannot be applied to the full output at once, but by making the decomposition
x2 = 2nx20 + 2n/2+1x0x1 + x21 we note that gate cost can be reduced to that of 6 quantum-
quantum multiplications of size n/2 (as opposed to one quantum-quantum multiplication
of size n). This type of optimization can be extended to reduce the qubit count as low as
n + O(1), but we believe that taking it any further than just described in practice is not
likely to be worth the tradeoff in gate count.

Finally we note that there is another optimization, described when the “computational
Bell test” protocol was originally introduced in Chapter 5, in which uncomputation of
“garbage bits” can be replaced simply by measurement in the Hadamard basis. For the
circuits we introduce here, this optimization is not actually very helpful, because there are
only O(1) garbage bits introduced in the circuit (the overflow bits of each (Ax)i, resp. z)!
In fact, we estimate that the experimental cost of performing extra intermediate measure-
ments instead of the O(1) gates to uncompute these values directly is almost certainly not
worth it. We consider a serious benefit of the circuits introduced here that they require no
extra intermediate measurement at all (except the measurements explicitly required by the
protocol).

7.5 Discussion and outlook
Developing quantum circuits based on classical algorithms is a subtle pursuit. Peculiarities
of the quantum setting, such as the need for reversibility and the limited number of qubits
on near- and medium-term quantum devices, preclude the straightforward translation of
classical circuits to quantum ones, especially for recursive algorithms. However, quantum
mechanics also provides us with new computational techniques that do not have classical
analogues. In this work we combine the algorithmic speedups from recursive fast multiplica-
tion algorithms, which are widely used in classical computing, with the inherently quantum
technique of performing arithmetic in the phase of a quantum state and then using a quantum
Fourier transform to recover the result. We show that this yields circuits for performing mul-
tiplication of numbers stored in quantum registers in a number of gates that is sub-quadratic
in the size of the inputs, for both classical-quantum and quantum-quantum multiplication.
This gate count scaling is achieved while using an extremely small number of qubits—as
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low as just two ancillas in addition to the registers storing the input and output. Our al-
gorithms also offload a considerable portion of the work to classical pre-computation in the
circuit compilation phase, significantly reducing the overhead of these asymtotically-faster
algorithms. We show that this reduction of overhead makes the algorithms not just a theo-
retical novelty, but potentially the smallest known circuits for the multiplication of integers
at sizes relevant in practice, for computations such as Shor’s algorithm and cryptographic
protocols for demonstrating quantum advantage.

There are several potential optimizations to our algorithm that warrant further
exploration—although there exist subtle pitfalls which must be considered along the way.
One open question is whether the techniques presented here can be applied to fast Fourier
transform based classical multiplication algorithms, the foremost being the Schonhage-
Strassen algorithm [182]. This algorithm replaces the matrix-vector products in, for example,
A−1(Ax ◦Az) with discrete Fourier transforms, which can be computed in O(n log n) time!
(The discrete Fourier transform here should not be confused with the quantum Fourier trans-
form already present in our algorithms—implementing Schonhage-Strassen on a quantum
computer would correspond to implementing a quantum circuit for a classical fast Fourier
transform algorithm, that outputs bitstrings representing the classical discrete Fourier trans-
form of the input). The subtle but seemingly inescapable obstacle preventing this from fitting
directly into our framework is that in Schonhage-Strassen, A, x, and z are defined on a ring
with some modulus (different from the modulus N we discuss in Sec. 7.4.1), while the vector
e against which the results are multiplied during the recomposition step is defined over all
integers. Because they are defined over different spaces, the matrix-vector products are no
longer associative—so precomputing e⊺A−1 will no longer yield the correct answer! Another
outstanding question is whether a quantum circuit for the discrete Fourier transform can be
devised that uses only a constant (or even logarithmic) number of ancilla qubits.

Within the algorithms that we do present, we believe there is still much room for op-
timization. The fact that the phase product portion of our circuits can be computed in
sub-linear depth begs the question of whether there is a corresponding sub-linear depth al-
gorithm for the quantum Fourier transform, which uses only a linear number of qubits. If
such an algorithm were applied to our circuits, the entire multiplication could be performed
in sub-linear depth. We also note that we do not explicitly give a sequence of additions and
subtractions that yield a sub-linear depth circuit for quantum-quantum multiplication. For
k = 4 PhaseTripleProduct, computing the 10 sub-products in three parallel groups would
yield a sub-linear depth circuit; the challenge is coming up with a sequence of arithmetic
operations that yields the appropriate linear combinations at the right times. We are vir-
tually certain that such a sequence of operations can be devised; we have not explored this
extensively due to the orthogonal issue of the lack of a sub-linear quantum Fourier trans-
form. More broadly, in all our algorithms it is worth exploring if there are better sequences
that yield the right linear combinations in fewer addition operations that the sequences we
propose. Perhaps there is an automated or algorithmic way to come up with these optimal
sequences in the general case.

Finally we note that there are certain optimizations applicable in the “schoolbook” Fourier
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multiplication algorithm that don’t translate in an obvious way to our algorithms. [156], [157]
For example, a classic optimization is to drop very small rotations that have a negligible effect
on the state. Unfortunately in our case there seem to be very few rotations small enough to
be dropped, because the elements of ê are complicated linear combinations of various powers
of two—and thus they usually contain at least one large term. One seemingly clever idea
when using our circuits in the proofs of quantumness described in Section 7.4 would be to set
the modulus N so that one or more of the elements of ê are close to a multiple of N . Then for
those values, êi mod N would be very small and whole branches of the recursive tree could
be ignored. Unfortunately there is an extremely subtle but critical danger in doing this: the
elements of ê have low hamming weight (number of bits set to 1), and thus so would N . The
classical special number field sieve algorithm is much more efficient at factoring numbers
with low Hamming weight than numbers of a general form, so this technique would likely
destroy the classical hardness of the quantum advantage protocol! [236]

Finally, we note that in this work we leave largely unexplored a number of practical
considerations, such as how this algorithm interacts with error correction, qubit routing,
and decomposition to native gate sets. We believe that these questions are important to
explore, because our estimates in the abstract circuit model suggest that our algorithms
could meaningfully reduce the resources required for quantum computations with real-world
impacts and applications. This is especially true if future works find further optimizations
(which we believe are likely to exist). Taking a broader perspective, the techniques for
multiplication of quantum integers presented here represent a fundamentally new direction
for the implementation of quantum arithmetic, combining two ideas which previously seemed
ill-suited to working together. Instead, we find that their combination yields the dramatic
benefits of both.
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Chapter 8

Conclusion

“Rapid calculation, all right,” went on the inventor. “It has to try out in a
certain formula about ten million numbers. Each number would take a man at
least six minutes to examine, which comes to sixty million minutes, or about a
million hours. A man could not work at this sort of thing more than ten hours
a day, so that gives a hundred thousand days. One could do it in three hundred
years if he did not get stale.” “How fast is the machine working on this list of
ten million numbers?” some one asked. “About a hundred thousand a minute,”
replied the young man. “It may take an hour and a half to clean up the problem.
With a larger driving motor we could make it in twenty minutes. The electric
eye would catch it if it were going five times as fast.”

Suddenly, click! The power was shut off. “It must have seen something.” The
machine was turned slowly back till a tell-tale beam of light appeared through the
little hole before which the electric eye had been watching. Then some reading of
dials and a little grinding of a computing machine and two numbers were found
such that the square of one of them plus seven times the square of the other were
equal to the number under examination. ...

The machine had done its duty. ... A few minutes computation still re-
mained, and thus it was, while coffee was being served on one of the working
tables in the laboratory the big number was broken up into the factors 59,957
and 88,114,244,437. These are the two hidden numbers which when multiplied
together will give the sixteen digit number under examination. It may seem to
the man in the street an odd thing to get excited about, but on this occasion

All Rome sent forth a rapturous cry,
And even the ranks of Tuscany
Could scarce forbear to cheer.

— Derrick N. Lehmer, Hunting Big Game in
the Theory of Numbers (1932)
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The problem of integer factorization has come up repeatedly throughout this dissertation,
so I hope that the reader will forgive me for beginning the conclusion with a somewhat silly
anecdote about it. Long before Shor’s algorithm, and long before even the RSA cryptosystem
based on factoring, number theorists had a strong interest in factoring integers. It is such a
straightforward problem—the inverse of multiplication, an operation which has been known
since time immemorial—yet for so long has remained stubbornly inefficient. Before the turn
of the 20th century, the endeavor of factoring numbers essentially consisted of coming up with
successively more and more clever methods of doing so by hand. One such method involved
the realization that factoring N could be accomplished by choosing a few small numbers
pi (say, 13, 17, 19, 23, 25), and finding an integer x for which x mod pi (the remainder when
divided by each of the small numbers) landed on one of a few “good” values, for all pi
simultaneously.1 Of course, simply exhaustively searching through integers by hand in an
effort to find such an x is extremely slow. So, in the late 1920s, Derrick H. Lehmer went
into the student shop of the physics building at UC Berkeley (precisely the same building in
which the work presented in this dissertation was performed!) and built a device consisting
of an axle with several gears on it, a loop of bicycle chain hanging off of each gear, and
some basic electrical components. [238] The number of links in each bicycle chain was set
to correspond to each pi, and a small piece of metal was attached to the chain links that
corresponded to the “good” set of values modulo pi. As the axle rotated, it incremented a
counter mechanism that displayed a value x; the bike chain loops, having length pi, naturally
tracked the values of x mod pi. The device was designed such that when the attached metal
pieces all simultaneously aligned—corresponding to an x mod pi in the “good” set for all
pi—it completed an electric circuit causing the axle’s rotation to stop, revealing x on the
counter and, with an easy further calculation, the factors of N . (The story recounted in
the quote from Lehmer above, with its “electric eye,” corresponds to a later iteration of the
machine which used a photoelectric detector as a more reliable way to detect when to stop
the axle. Despite the fantastical-sounding nature of it, as far as I know it is a real story. If
only it were still acceptable to write scientific papers with such flowery language...) It is not
an understatement to say this machine revolutionized the practice of factoring numbers. It
smashed records for the largest numbers that had been factored at that time by orders of
magnitude, and kicked off a new era of using machines, rather than pen and paper, to tackle
this, and other, challenging problems.

At some level I feel that despite the dramatic difference in the hardware available to
us, modern computing research, and especially quantum computing, is in the same spirit
as Lehmer’s work. As researchers in these fields, our task is to take the physical laws of
the world in which we live—making use of the inventions of those who came before us,
whether they be bicycle chains or semiconductors—and use them to process information.
I am honored to have had the chance, in this dissertation work, to contribute small steps
forward in this endeavor, alongside many colleagues all across the world.

1The set of “good” values for each pi is a function of N mod pi. For a nice overview of how this works,
see [237] or any article on the “Lehmer sieve.”
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Of course, the work continues. For the reasons laid out in Section 1.1 of the introduction,
I expect classical numerical study to remain an important tool in the analysis and devel-
opment of quantum systems for years to come. Classical computing hardware is advancing
rapidly, and leveraging new technologies—whether GPU acceleration as discussed in Chap-
ter 2, or perhaps even newer types of processors just appearing on the horizon such as tensor
processing units (TPUs) [88], [239]—will require constantly upgrading the software imple-
menting our numerical techniques. As shown in Chapter 3, tuning numerical techniques
for the specific problem at hand has the potential to yield considerable benefits; it would
be interesting to explore which of those innovations can applied more generally, or at least
ported to more general software packages like the dynamite library presented in Chapter 2.
One specific direction which has already begun to be explored (in yet unpublished work) is
the potential to apply the techniques of Chapter 3 to new quantum systems with similar
structure, such as the Heisenberg plus random field model in two dimensions.

In the field of quantum cryptographic protocols, there are too many open research direc-
tions to list them all here. The most direct extension of the work in Part II is to continue
the push to implement an efficiently-verifiable demonstration of quantum advantage at scale.
One idea which to my knowledge has not been explored much is to relax our definition of
“efficient” verification. The quantum advantage protocols discussed in Part II of this disser-
tation can be verified by a classical machine in polynomial-time—but this may be overkill.
A protocol which is exponentially hard to reproduce classically, and also exponentially hard
to verify, could still be useful if the verification exponential is considerably smaller. For
example, if reproducing the results takes 2n classical operations, but verifying them takes
only 2n/2, it would be possible to run an experiment that is classically infeasible to reproduce
but still can be verified with some effort.

Taking a broader perspective, demonstrations of quantum advantage will only remain in-
teresting for some time—after efficiently-verifiable ones have been convincingly implemented,
they will not have much direct use. But quantum cryptographic protocols with similar struc-
ture have already been shown to be useful for a number of more interesting tasks, such as
certifiable randomness generation, verifiable remote state preparation, and verifiable dele-
gated quantum computing. [39], [47], [48] A clear next step forward is to explore other types
of practically-useful tasks to which these protocols may be applied.

Looking at the field of quantum computing more generally, it is up to anyone’s guess
what the future holds. From the theoretical side, there are few explicit proofs bounding how
things may go. The number of problems for which a truly radical superpolynomial quantum
speedup has been explicitly shown is not large—and this set consists largely of somewhat
abstract number theoretic problems, which are only considered important to people’s lives
due to their use in cryptography. Furthermore, from the perspective of complexity theory,
there is not even any real evidence that factoring, for example, is a hard problem classically:
our best evidence so far is that a lot of very smart people have tried to figure out how to do
it efficiently, and nobody has succeeded. On a somewhat similar note, quantum computers
are widely conjectured (or hoped, depending on your perspective) to be useful for crucial
real-world applications such as quantum chemistry—but concrete evidence for these claims
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is hard to come by. [240] Given these points, I see three broad paths that the future of
quantum computing may follow.

In one (perhaps unlikely, but I think not implausible) future, an efficient classical al-
gorithm (or algorithms) will be discovered for the problems like factoring that quantum
computers have been conjectured to dramatically to speed up. This is the world in which
the complexity classes BQP and BPP—informally, the problems efficiently solvable by quan-
tum and classical computers respectively—are equal. In this case we would be stuck with
only polynomial speedups from quantum computers, and getting any useful advantage from
them in solving real-world problems would require astounding advances in quantum hardware
(see Section 1.2 of the introduction). Hopefully such hardware advances will be achieved,
but it seems likely to take many, many years of work. In this world, quantum computers
can still find use as extremely precisely programmable physics experiments, with the ability
to implement large classes of quantum Hamiltonians with the push of a button.

In another future, problems like factoring remain hard classically, but no new “killer”
applications are found beyond the broad categories of quantum speedup already explicitly
known. In this case, quantum computers will eventually force the world’s cryptography to
move to post-quantum secure algorithms, but aside from that, the outlook doesn’t actu-
ally look much different than that of the BQP=BPP world. Building quantum computers
applicable to other real-world problems will take an enormous amount of effort.

In the third and most optimistic future, new applications of quantum computers, in
which they show considerable and practical advantage over classical ones, will be discovered
in the next few years. It seems that this future is the one that many people are hoping for
(and in some cases betting their money on). It is not a terrifically implausible scenario: as
discussed in the introduction, it is very difficult to discover new algorithms if you can only
run them in your imagination. Hopefully, with the increasing availability of programmable
quantum systems of considerable size, exploring their capabilities will lead to unexpected new
directions. Such a situation would not be without precedent: an example directly relevant to
Chapter 2 is the case of classical Krylov subspace algorithms for the matrix exponential. To
quote Sidje [78], “It seems these techniques were long established among chemical physicists
without much justification other than their satisfactory behavior.” That is, someone just
tried it, and it seemed to work pretty well! Only later was it rigorously understood why the
error remained well-bounded. Perhaps new quantum algorithms will follow this path as well,
with meaningful impacts on the world’s gravest problems such as climate change.

With that, I would like to conclude with a reminder that we ought to consider not only
what problems technologies like quantum computing could solve, but also whether they are
the right solution to pursue. Take climate change, for example: as just discussed, there is
a small chance that quantum computers will lead to a breakthrough in carbon capture or,
say, the production of fertilizer, that meaningfully helps to avert climate catastrophe. But
the thing is, we already know how to avert climate catastrophe—by cutting down on the
many wildly inefficient and unnecessary sources of greenhouse gas emissions that permeate
our society. We even already know how to capture carbon—by preserving and restoring the
world’s forest and ocean ecosystems which serve as massive natural carbon sinks. To be
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clear, I am not suggesting that investment in technology like quantum computing is useless.
I certainly think it is worth pursuing, and I care on a personal level about its advancement.
I simply hope that we can move it forward without ignoring the other, potentially less flashy,
yet very important solutions to the critical problems of our world.
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